scholarly journals Non‐material finite element rod model for the lateral run‐off in a two‐pulley belt drive

Author(s):  
Christian Schmidrathner ◽  
Yury Vetyukov ◽  
Jakob Scheidl
Keyword(s):  
Run Off ◽  
Author(s):  
Jakob Scheidl ◽  
Yury Vetyukov ◽  
Christian Schmidrathner ◽  
Klemens Schulmeister ◽  
Michael Proschek

2021 ◽  
Author(s):  
Rebecca Berthold ◽  
Max Niklas Bartholdt ◽  
Mats Wiese ◽  
Stephanie Kahms ◽  
Svenja Spindeldreier ◽  
...  

Author(s):  
Tamer M. Wasfy

An asperity spring friction model that uses a variable anchor point spring along with a velocity dependent force is presented. The model is incorporated in an explicit timeintegration finite element code. The friction model is used along with a penalty-based normal contact model to simulate the dynamic response of a two-pulley belt-drive system. It is shown that the present friction model accurately captures the stick-slip behavior between the belt and the pulleys using a much larger time-step than a pure velocity-dependent approximate Coulomb friction model.


2004 ◽  
Vol 72 (4) ◽  
pp. 570-580 ◽  
Author(s):  
Michael J. Leamy

A perturbation method is presented for use in analyzing unsteady belt-drive operation. The method relies on the important assumption that for operating states close to steady operation, the friction state (i.e., whether the belt is creeping or sticking at any location on the pulley) is similar to that of the well-known steady solution in which a lone stick arc precedes a lone slip arc (Johnson, K. L., 1985, Contact Mechanics, Cambridge U.P., London, Chap. 8; Smith, D. P., 1999, Tribol. Int., 31(8), pp. 465–477). This assumption, however, is not used to determine the friction force distribution, and, in fact, the friction forces in the stick zone are found to be nonzero, in direct contrast to the steady solution. The perturbation analysis is used to derive expressions for the span tensions, the pulley tension distributions, the contact forces between the belt and the pulleys, and the angular velocity of the driven pulleys. Validity criteria are developed which determine bounds on the operation state for which the assumed friction state is upheld. Verification of response quantities from the perturbation solution is accomplished through comparison to quantities predicted by an in-house dynamic finite element model and excellent agreement is found. Additionally, the finite element model is used to verify the key assumption that a lone slip arc precedes a lone stick arc.


2002 ◽  
Vol 69 (6) ◽  
pp. 763-771 ◽  
Author(s):  
M. J. Leamy ◽  
T. M. Wasfy

An analysis of the frictional mechanics of a steadily rotating belt drive is carried out using a physically appropriate creep-rate-dependent friction law. Unlike in belt-drive mechanics analyzed using a Coulomb friction law, the current analysis predicts no adhesion zones in the belt-pulley contact region. Regardless of this finding, for the limiting case of a creep-rate law approaching a Coulomb law, all predicted response quantities (including the extent of belt creep on each pulley) approach those predicted by the Coulomb law analysis. Depending on a slope parameter governing the creep-rate profile, one or two sliding zones exist on each pulley, which together span the belt-pulley contact region. Closed-form expressions are obtained for the tension distribution, the sliding-zone arc magnitudes, and the frictional and normal forces per unit length exerted on the belt. A sample two-pulley belt drive is analyzed further to determine its pulley angular velocity ratio and belt-span tensions. Results from this analysis are compared to a dynamic finite element solution of the same belt drive. Excellent agreement in predicted results is found. Due to the presence of arbitrarily large system rotations and a numerically friendly friction law, the analytical solution presented herein is recommended as a convenient comparison test case for validating friction-enabled dynamic finite element schemes.


2020 ◽  
Vol 145 ◽  
pp. 02080
Author(s):  
Zunxiang Li ◽  
Ou Zhongqing ◽  
Jiao jing ◽  
Huang xiaohong ◽  
Du jihua

With the rotary cutting system of king grass shredder as the research object, this paper established finite element models for rotating shaft, rotating shaft-belt pulley, rotating shaft-rotary cutting part and rotary cutting system and analyzed the influences of belt pulley and rotary cutting part on the dynamic characteristics of rotary cutting system. The results showed that the belt pulley and rotary cutting part had a great influence on the second order critical speed of rotary cutting system, and the rotary cutting part had a greater influence on the critical speed of first order forward precession than the belt pulley. Meanwhile, the critical speed of rotary cutting system that conformed to facts was calculated. There was a big difference between its first order and second order critical speeds, but the critical speed of first order backward precession was lower. Finally, it was found after analysis that the natural frequency of rotary cutting system was lower than the vibration frequency induced by belt drive, so the shredder can run safely.


2002 ◽  
Vol 124 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Michael J. Leamy ◽  
Tamer M. Wasfy

In this study, a dynamic finite element model is developed for pulley belt-drive systems and is employed to determine the transient and steady-state response of a prototypical belt-drive. The belt is modeled using standard truss elements, while the pulleys are modeled using rotating circular constraints, for which the driver pulley’s angular velocity is prescribed. Frictional contact between the pulleys and the belt is modeled using a penalty formulation with frictional contact governed by a Coulomb-like tri-linear friction law. One-way clutch elements are modeled using a proportional torque law supporting torque transmission in a single direction. The dynamic response of the drive is then studied by incorporating the model into an explicit finite element code, which can maintain time-accuracy for large rotations and for long simulation times. The finite element solution is validated through comparison to an exact analytical solution of a steadily-rotating, two-pulley drive. Several response quantities are compared, including the normal and tangential (friction) force distributions between the pulleys and the belt, the driven pulley angular velocity, and the belt span tensions. Excellent agreement is found. Transient response results for a second belt-drive example involving a one-way clutch are used to demonstrate the utility and flexibility of the finite element solution approach.


Author(s):  
Roger A. Sauer

We present a hierarchical rod model which describes the deformation and adhesion of Gecko setae. These fine hairs form the microstructure of the Gecko toes and enable the Gecko to adhere to inclined and overhanging surfaces. The adhesion is modelled by the van der Waals interaction between the molecules of the seta tips and the surface. To bridge the gap between molecular and seta scale, an intermediate model is formulated for the seta tips, the so called spatulae. The hierarchical seta model is cast into a nonlinear finite element framework to study the pull-off behavior of a single seta from an underlying substrate.


Author(s):  
Mohammed Khattab ◽  
Tamer Wasfy

Abstract The objective of this study is to investigate if a high-fidelity finite element model can predict the Schallamach wave phenomenon in belt-drives. To this end a computational model which closely mimics a recently developed one-pulley experimental belt-drive apparatus, was created. The dynamic response predicted by the model is compared to the experiment results in order to demonstrate that the model can be used to predict the Schallamach wave phenomenon. Furthermore, the model is used to investigate the roles of Coulomb friction coefficient, adhesion, and torque direction on stick-slip instability effects.


Sign in / Sign up

Export Citation Format

Share Document