cdc2 Kinase Phosphorylation of Desmin at Three Serine/Threonine Residues in the Amino-Terminal Head Domain

1993 ◽  
Vol 190 (3) ◽  
pp. 927-934 ◽  
Author(s):  
M. Kusubata ◽  
Y. Matsuoka ◽  
K. Tsujimura ◽  
H. Ito ◽  
S. Ando ◽  
...  
1994 ◽  
Vol 213 (1) ◽  
pp. 128-142 ◽  
Author(s):  
Michael Beuttenmüller ◽  
Ming Chen ◽  
Alfred Janetzko ◽  
Siegfried Kühn ◽  
Peter Traub

1989 ◽  
Vol 109 (6) ◽  
pp. 2895-2903 ◽  
Author(s):  
A Garcia ◽  
E Coudrier ◽  
J Carboni ◽  
J Anderson ◽  
J Vandekerkhove ◽  
...  

The actin bundle within each microvillus of the intestinal brush border is laterally tethered to the membrane by bridges composed of the protein complex, 110-kD-calmodulin. Previous studies have shown that avian 110-kD-calmodulin shares many properties with myosins including mechanochemical activity. In the present study, a cDNA molecule encoding 1,000 amino acids of the 110-kD protein has been sequenced, providing direct evidence that this protein is a vertebrate homologue of the tail-less, single-headed myosin I first described in amoeboid cells. The primary structure of the 110-kD protein (or brush border myosin I heavy chain) consists of two domains, an amino-terminal "head" domain and a 35-kD carboxy-terminal "tail" domain. The head domain is homologous to the S1 domain of other known myosins, with highest homology observed between that of Acanthamoeba myosin IB and the S1 domain of the protein encoded by bovine myosin I heavy chain gene (MIHC; Hoshimaru, M., and S. Nakanishi. 1987. J. Biol. Chem. 262:14625-14632). The carboxy-terminal domain shows no significant homology with any other known myosins except that of the bovine MIHC. This demonstrates that the bovine MIHC gene most probably encodes the heavy chain of bovine brush border myosin I (BBMI). A bacterially expressed fusion protein encoded by the brush border 110-kD cDNA binds calmodulin. Proteolytic removal of the carboxy-terminal domain of the fusion protein results in loss of calmodulin binding activity, a result consistent with previous studies on the domain structure of the 110-kD protein. No hydrophobic sequence is present in the molecule indicating that chicken BBMI heavy chain is probably not an integral membrane protein. Northern blot analysis of various chicken tissue indicates that BBMI heavy chain is preferentially expressed in the intestine.


2001 ◽  
Vol 75 (21) ◽  
pp. 10326-10333 ◽  
Author(s):  
Sunil J. Advani ◽  
Ralph R. Weichselbaum ◽  
Bernard Roizman

ABSTRACT Earlier studies have shown that cdc2 kinase is activated during herpes simplex virus 1 infection and that its activity is enhanced late in infection even though the levels of cyclin A and B are decreased below levels of detection. Furthermore, activation of cdc2 requires the presence of infected cell protein no. 22 and the UL13 protein kinase, the same gene products required for optimal expression of a subset of late genes exemplified by US11, UL38, and UL41. The possibility that the activation of cdc2 and expression of this subset may be connected emerged from the observation that dominant negative cdc2 specifically blocked the expression of US11 protein in cells infected and expressing dominant negative cdc2. Here we report that in the course of searching for a putative cognate partner for cdc2 that may have replaced cyclins A and B, we noted that the DNA polymerase processivity factor encoded by the UL42 gene contains a degenerate cyclin box and has been reported to be structurally related to proliferating cell nuclear antigen, which also binds cdk2. Consistent with this finding, we report that (i) UL42 is able to physically interact with cdc2 at both the amino-terminal and carboxyl-terminal domains, (ii) the carboxyl-terminal domain of UL42 can be phosphorylated by cdc2, (iii) immunoprecipitates obtained with anti UL42 antibody contained a roscovitine-sensitive kinase activity, (iv) kinase activity associated with UL42 could be immunodepleted by antibody to cdc2, and (v) UL42 transfected into cells associates with a nocodazole-enhanced kinase. We conclude that UL42 can associate with cdc2 and that the kinase activity has the characteristic traits of cdc2 kinase.


1998 ◽  
Vol 111 (3) ◽  
pp. 321-333 ◽  
Author(s):  
G.Y. Ching ◽  
R.K. Liem

The roles of the head and tail domains of alpha-internexin, a type IV neuronal intermediate filament protein, in its self-assembly and coassemblies with neurofilament triplet proteins, were examined by transient transfections with deletion mutants in a non-neuronal cell line lacking an endogenous cytoplasmic intermediate filament network. The results from the self-assembly studies showed that the head domain was essential for alpha-internexin's ability to self-assemble into a filament network and the tail domain was important for establishing a proper filament network. The data from the coassembly studies demonstrated that alpha-internexin interacted differentially with the neurofilament triplet protein subunits. Wild-type NF-L or NF-M, but not NF-H, was able to complement and form a normal filament network with the tailless alpha-internexin mutant, the alpha-internexin head-deletion mutant, or the alpha-internexin mutant missing the entire tail and some amino-terminal portion of the head domain. In contrast, neither the tailless NF-L mutant nor the NF-L head-deletion mutant was able to form a normal filament network with any of these alpha-internexin deletion mutants. However, coassembly of the tailless NF-M mutant with the alpha-internexin head-deletion mutant and coassembly of the NF-M head-deletion mutant with the tailless alpha-internexin mutant resulted in the formation of a normal filament network. Thus, the coassembly between alpha-internexin and NF-M exhibits some unique characteristics previously not observed with other intermediate filament proteins: only one intact tail and one intact head are required for the formation of a normal filament network, and they can be present within the same partner or separately in two partners.


2003 ◽  
Vol 370 (1) ◽  
pp. 91-100 ◽  
Author(s):  
George THOM ◽  
Nicola MINSHALL ◽  
Anna GIT ◽  
Joanna ARGASINSKA ◽  
Nancy STANDART

Cytoplasmic polyadenylation-element-binding protein (CPEB) is a well-characterized and important regulator of translation of maternal mRNA in early development in organisms ranging from worms, flies and clams to frogs and mice. Previous studies provided evidence that clam and Xenopus CPEB are hyperphosphorylated at germinal vesicle breakdown (GVBD) by cdc2 kinase, and degraded shortly after. To examine the conserved features of CPEB that mediate its modification during meiotic maturation, we microinjected mRNA encoding wild-type and mutated clam CPEB into Xenopus oocytes that were subsequently allowed to mature with progesterone. We observed that (i) ectopically expressed clam CPEB is phosphorylated at GVBD and subsequently degraded, mirroring the fate of the endogenous Xenopus CPEB protein, (ii) mutation of nine Ser/Thr Pro-directed kinase sites prevents phosphorylation and degradation and (iii) deletion of the PEST box, and to a lesser extent of the putative cyclin destruction box, generates a stable and phosphorylated version of CPEB. We conclude that phosphorylation of both consensus and non-consensus sites by cdc2 kinase targets clam CPEB for PEST-mediated destruction. We also show that phosphorylation of CPEB mediates its dissociation from ribonucleoprotein complexes, prior to degradation. Our findings reinforce results obtained in Xenopus, and have implications for CPEB from other invertebrates including Drosophila, Caenorhabditis elegans and Aplysia, which lack PEST boxes.


Sign in / Sign up

Export Citation Format

Share Document