Comparison of a Left-Handed Z-DNA Molecular Structure Determined by X-Rays with That Simulated by a Molecular Dynamics

1997 ◽  
Vol 236 (1) ◽  
pp. 146-150 ◽  
Author(s):  
Hirofumi Ohishi ◽  
Isao Nakanishi ◽  
Ken-ichi Tomita
1989 ◽  
Vol 264 (14) ◽  
pp. 7921-7935
Author(s):  
R V Gessner ◽  
C A Frederick ◽  
G J Quigley ◽  
A Rich ◽  
A H J Wang

Author(s):  
Joel M. Harp ◽  
Leighton Coates ◽  
Brendan Sullivan ◽  
Martin Egli

Crystals of left-handed Z-DNA [d(CGCGCG)]2 diffract X-rays to beyond 1 Å resolution, feature a small unit cell (∼18 × 31 × 44 Å) and are well hydrated, with around 90 water molecules surrounding the duplex in the asymmetric unit. The duplex shows regular hydration patterns in the narrow minor groove, on the convex surface and around sugar–phosphate backbones. Therefore, Z-DNA offers an ideal case to test the benefits of low-temperature neutron diffraction data collection to potentially determine the donor–acceptor patterns of first- and second-shell water molecules. Nucleic acid fragments pose challenges for neutron crystallography because water molecules are located on the surface rather than inside sequestered spaces such as protein active sites or channels. Water molecules can be expected to display dynamic behavior, particularly in cases where water is not part of an inner shell and directly coordinated to DNA atoms. Thus, nuclear density maps based on room-temperature diffraction data with a resolution of 1.6 Å did not allow an unequivocal determination of the orientations of water molecules. Here, cryo-neutron diffraction data collection for a Z-DNA crystal on the Macromolecular Neutron Diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory and the outcome of an initial refinement of the structure are reported. A total of 12 diffraction images were recorded with an exposure time of 3.5 h per image, whereby the crystal was static for each diffraction image with a 10° φ rotation between images. Initial refinements using these neutron data indicated the positions and orientations of 30 water molecules within the first hydration shell of the DNA molecule. This experiment constitutes a state-of-the-art approach and is the first attempt to our knowledge to determine the low-temperature neutron structure of a DNA crystal.


2003 ◽  
Vol 60 (3) ◽  
pp. 418-423 ◽  
Author(s):  
C.E Gagna ◽  
W.C Lambert
Keyword(s):  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2748 ◽  
Author(s):  
Ae-Ree Lee ◽  
Na-Hyun Kim ◽  
Yeo-Jin Seo ◽  
Seo-Ree Choi ◽  
Joon-Hwa Lee

Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.


Author(s):  
Hong-Liang Bao ◽  
Tatsuki Masuzawa ◽  
Takanori Oyoshi ◽  
Yan Xu

Abstract Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.


about chemical bonding and molecular structure. This information can be used to detect th e types of organic materials present on the surface. 4.3.2.2. Raman spectroscopy (RS) [7, 8] It is used to examine the energy levels of molecules that cannot be well character-ized via infrared spectroscopy. Th e two techniques, however, are complimentary. In the RS, a sample is irradiated with a strong monochromatic light source (usu-ally a laser). Most of the radiation will scatter or "reflect off' the sample at the same energy as the incoming laser radiation. However, a small amount will scat-ter from the sample at a wavelength slightly shifted from the original wavelength. It is possible to study the molecular structure or determine the chemical identity of the sample. It is quite straightforward to identify compounds by spectral library search. Due to extensive library spectral information, the unique spectral finger-print of every compound, and the ease with which such analyses can be per-formed, the RS is a very useful technique for various applications. An important application of the RS is the rapid, nondestructive characterization of diamond, diamond-like, and amorphous-carbon films. 4.3.2.3. Scanning electron microscopy (SEM) / energy dispersive X-ra y analysis (EDX) [7, 8] The SEM produce s detailed photographs that provide important information about the surface structure and morphology of almost any kind of sample. Image analy-sis is often the first and most important step in problem solving and failure analy-sis. With SEM, a focused beam of high-energy electrons is scanned over the sur-face of a material, causing a variety of signals, secondary electrons, X-rays, photons, etc. - each of which may be used to characterize the material with re-spect to specific properties . The signals are used to modulate the brightness on a CRT display, thereb y providing a high-resolution map of the selected material property. It is a surface imaging technique, but with Energy Dispersive X-ray (EDX) it can identify elements in the near-surface region. This technique is most useful for imaging particles. 4.3.2.4. X-ray fluorescence (XRF) [7, 8] Incident X-rays are used to excite surface atoms. The atoms relax through the emission of an X-ray with energy characteristic of the parent atoms and the inten-sity proportional to the amount of the element present. It is a bulk or "total mate-rials" characterization technique for rapid, simultaneous, and nondestructive analysis of elements having an atomic number higher than that of boron. Tradi-tional bulk analysis applications include identifying metals and alloys, detecting trace elements in liquids, and identifying residues and deposits. 4.3.2.5. Total-reflection X-ray fluorescence (TXRF) [7, 8] It is a special XRF technique that provides extremely sensitive measures of the elements present in a material's outer surface. Applications include searching for metal contamination in thin films on silicon wafers and detecting picogram-levels o f arsenic, lead, mercury and cadmium on hazardous, chemical fume hoods.

2003 ◽  
pp. 43-45

Fuel ◽  
2020 ◽  
Vol 263 ◽  
pp. 116777 ◽  
Author(s):  
Manman Su ◽  
Chundi Si ◽  
Zengping Zhang ◽  
Hongliang Zhang

Sign in / Sign up

Export Citation Format

Share Document