Retrovirus-Mediated Gene Therapy for Hepatocellular Carcinoma with Reversely Oriented Therapeutic Gene Expression Regulated by α-Fetoprotein Enhancer/Promoter

2001 ◽  
Vol 287 (4) ◽  
pp. 1034-1040 ◽  
Author(s):  
Hiroki Ishikawa ◽  
Keisuke Nakata ◽  
Fumihiro Mawatari ◽  
Toshihito Ueki ◽  
Shotaro Tsuruta ◽  
...  
Hepatology ◽  
1995 ◽  
Vol 22 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Shigeki Kuriyama ◽  
Toshiya Nakatani ◽  
Kazuhiro Masui ◽  
Takemi Sakamoto ◽  
Kentarou Tominaga ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 272-280 ◽  
Author(s):  
Li Wang ◽  
Min Yao ◽  
Wenjie Zheng ◽  
Miao Fang ◽  
Mengna Wu ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2020 ◽  
Vol 177 ◽  
pp. 113912 ◽  
Author(s):  
Jana Nekvindova ◽  
Alena Mrkvicova ◽  
Veronika Zubanova ◽  
Alena Hyrslova Vaculova ◽  
Pavel Anzenbacher ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ji Li ◽  
Chen Zhu ◽  
Peipei Yue ◽  
Tianyu Zheng ◽  
Yan Li ◽  
...  

Abstract Background Abnormal energy metabolism is one of the characteristics of tumor cells, and it is also a research hotspot in recent years. Due to the complexity of digestive system structure, the frequency of tumor is relatively high. We aim to clarify the prognostic significance of energy metabolism in digestive system tumors and the underlying mechanisms. Methods Gene set variance analysis (GSVA) R package was used to establish the metabolic score, and the score was used to represent the metabolic level. The relationship between the metabolism and prognosis of digestive system tumors was explored using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Volcano plots and gene ontology (GO) analyze were used to show different genes and different functions enriched between different glycolysis levels, and GSEA was used to analyze the pathway enrichment. Nomogram was constructed by R package based on gene characteristics and clinical parameters. qPCR and Western Blot were applied to analyze gene expression. All statistical analyses were conducted using SPSS, GraphPad Prism 7, and R software. All validated experiments were performed three times independently. Results High glycolysis metabolism score was significantly associated with poor prognosis in pancreatic adenocarcinoma (PAAD) and liver hepatocellular carcinoma (LIHC). The STAT3 (signal transducer and activator of transcription 3) and YAP1 (Yes1-associated transcriptional regulator) pathways were the most critical signaling pathways in glycolysis modulation in PAAD and LIHC, respectively. Interestingly, elevated glycolysis levels could also enhance STAT3 and YAP1 activity in PAAD and LIHC cells, respectively, forming a positive feedback loop. Conclusions Our results may provide new insights into the indispensable role of glycolysis metabolism in digestive system tumors and guide the direction of future metabolism–signaling target combined therapy.


Sign in / Sign up

Export Citation Format

Share Document