Protein Kinase C Isoform Expression and Activity Alter Paclitaxel Resistancein Vitro

1999 ◽  
Vol 72 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Lugen Chen ◽  
Robert A. Burger ◽  
Gretchen M. Zaunbrecher ◽  
Huaxu Cheng ◽  
A.Jeannine Lincoln ◽  
...  
1993 ◽  
Vol 264 (5) ◽  
pp. C1350-C1359 ◽  
Author(s):  
T. A. Kohout ◽  
T. B. Rogers

Molecular cloning has identified at least nine unique isozymes of protein kinase C (PKC) designated alpha, beta I, beta II, gamma, delta, epsilon, zeta, and eta/L, with the recent addition of the theta-isoform. Previous attempts to characterize PKC isoform expression in heart have been limited by low levels of protein and perhaps by the presence of novel isoforms. Thus to critically examine the diversity of PKC expression in cardiac cells, we developed a reverse transcriptase-polymerase chain reaction (RT-PCR) approach that would amplify regions of the target cDNA of all the PKC isozymes in a single reaction. Degenerate oligonucleotide primers were designed to recognize sequences in the conserved regions of the PKC sequence motif: the cysteine-rich and the ATP-binding regions. Amplification of target PKC cDNA sequences resulted in PCR products with unique sizes and restriction digestion properties. The system was validated by identifying PCR products that correspond to all of the PKC isoform transcripts, except PKC-zeta, in a single reaction with cDNA derived from hippocampus. Cardiac cDNA was RT-PCR amplified, and the products were analyzed by a combination of restriction mapping and DNA sequencing that revealed the presence of only the alpha, delta, epsilon, and eta isoforms in adult rat cardiac myocytes and cultured neonatal ventricular myocytes. A unique nondegenerate primer pair was synthesized to recognize PKC-zeta cDNA. Results with these primers show that PKC-zeta is present in both cardiac myocyte preparations as well. The RT-PCR method developed here is an efficient approach that is broadly useful to examine PKC expression in many tissues, including the identification of potentially novel isoforms.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 98 (4) ◽  
pp. 243-251
Author(s):  
Mutlu Sarikaya ◽  
Nuray Yazihan ◽  
Net Daş Evcimen

Protein kinase C (PKC) and aldose reductase (AR) enzyme activities are increased in diabetes and complications are include retinopathy, nephropathy, and neuropathy. However, the relationship between PKC and AR and the underlying molecular mechanisms is still unclear. We aimed to evaluate the relationship between these two enzymes and clarify the underlying molecular mechanisms by the related signaling molecules. The effects of hyperglycemia and oxidative stress on AR and PKC enzymes and the signaling molecules such as nuclear factor-kappa B (NF-κB), inhibitor kappa B-alpha (IkB-α), total c-Jun, phospho c-Jun, and stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) were evaluated in human retinal pigment epithelial cells (ARPE-19). AR, PKC protein levels, and related signaling molecules increased with hyperglycemia and oxidative stress. The AR inhibitor sorbinil decreased PKC expression and activity and all signaling molecule protein levels. Increased AR expression during hyperglycemia and oxidative stress was found to be correlated with the increase in PKC expression and activity in both conditions. Decreased expression and activity of PKC and the protein levels of related signaling molecules with the AR inhibitor sorbinil showed that AR enzyme may play a key role in the expression of PKC enzyme and oxidative stress during diabetes.


2000 ◽  
Vol 118 (4) ◽  
pp. A908
Author(s):  
Man Le ◽  
Rachel Weston ◽  
Yasushi Matsuzaki ◽  
Mikio Doi ◽  
Bernard Bouscarel

Sign in / Sign up

Export Citation Format

Share Document