Atomic Force Microscopy Studies of Membranes: Effect of Surface Roughness on Double-Layer Interactions and Particle Adhesion

2000 ◽  
Vol 229 (2) ◽  
pp. 544-549 ◽  
Author(s):  
W. Richard Bowen ◽  
Teodora A. Doneva
2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Gros-Otero ◽  
Samira Ketabi ◽  
Rafael Cañones-Zafra ◽  
Montserrat Garcia-Gonzalez ◽  
Cesar Villa-Collar ◽  
...  

Abstract Background To compare the anterior surface roughness of two commercially available posterior chamber phakic intraocular lenses (IOLs) using atomic force microscopy (AFM). Methods Four phakic IOLs were used for this prospective, experimental study: two Visian ICL EVO+ V5 lenses and two iPCL 2.0 lenses. All of them were brand new, were not previously implanted in humans, were monofocal and had a dioptric power of − 12 diopters (D). The anterior surface roughness was assessed using a JPK NanoWizard II® atomic force microscope in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Anterior surface roughness measurements were made in 7 areas of 10 × 10 μm at 512 × 512 point resolution. The roughness was measured using the root-mean-square (RMS) value within the given regions. Results The mean of all anterior surface roughness measurements was 6.09 ± 1.33 nm (nm) in the Visian ICL EVO+ V5 and 3.49 ± 0.41 nm in the iPCL 2.0 (p = 0.001). Conclusion In the current study, we found a statistically significant smoother anterior surface in the iPCL 2.0 phakic intraocular lenses compared with the VISIAN ICL EVO+ V5 lenses when studied with atomic force microscopy.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


1996 ◽  
Vol 428 ◽  
Author(s):  
G. O. Ramseyer ◽  
L. H. Walsh ◽  
J. V. Beasock ◽  
H. F. Helbig ◽  
R. C. Lacoe ◽  
...  

AbstractPatterned 930 nm Al(1%-Si) interconnects over 147 nm of Cu were electromigration lifetime tested at 1.0–1.5 × 105 A/cm2 at 250 °C. The morphology of the surfaces of the electromigrated stripes with different line widths and times to failure were characterized by atomic force microscopy, and changes in surface roughness were compared. The diffusion of copper into the electromigrated aluminum stripes was determined by depth profiling using Auger electron spectroscopy. In particular, areas where hillocks formed were examined and compared to areas of median roughness.


1997 ◽  
Vol 71 (18) ◽  
pp. 2632-2634 ◽  
Author(s):  
Tatsuya Miyatani ◽  
Miki Horii ◽  
Armin Rosa ◽  
Masamichi Fujihira ◽  
Othmar Marti

Sign in / Sign up

Export Citation Format

Share Document