Structural Changes of Active Site Cleft and Different Saccharide Binding Modes in Human Lysozyme Co-crystallized with Hexa-N-acetyl-chitohexaose at pH 4.0

1994 ◽  
Vol 244 (5) ◽  
pp. 522-540 ◽  
Author(s):  
Haiwei Song ◽  
Koji Inaka ◽  
Katsumi Maenaka ◽  
Masaaki Matsushima
2020 ◽  
Author(s):  
Melaine A. Kuenemann ◽  
Phyo Phyo Zin ◽  
Sravya Kuchibhotla ◽  
Denis Fourches

<p></p><p>Onchocerciasis (also known as river blindness<i>)</i> is a neglected tropical disease caused by the <i>Onchocerca volvulus</i> parasitic nematode. Currently, the only approved drug for treating this disease is ivermectin, which is a broad-spectrum antiparasitic agent. However, signs of resistance towards ivermectin have started to emerge. New therapeutic agents are thus urgently needed. The OvCHT1 chitinase enzyme from <i>O. volvulus</i> has been established as a relevant biological target for combatting river blindness. The veterinary anthelmintic drug closantel has been found to be a potent, micro-molar OvCHT1 inhibitor. Herein, we investigated the chemical space of closantel and all its synthesized analogues, focusing on the analysis of their potential binding modes towards OvCHT1. First, we conducted an unsupervised hierarchical clustering to group highly similar analogues and explore structure-activity relationships. Second, we conducted a structure-based molecular docking to predict and study the binding modes of all 57 closantel analogues in the active site of OvCHT1. Third, we screened more than 4 million lead-like compounds from the ZINC library to identify other structurally similar ligands that could potentially bind to OvCHT1. The cheminformatics analysis of the closantel analogues illustrated how minor structural changes in closantel analogues can impact their OvCHT1 activity.</p><p></p>


2020 ◽  
Author(s):  
Melaine A. Kuenemann ◽  
Phyo Phyo Zin ◽  
Sravya Kuchibhotla ◽  
Denis Fourches

<p></p><p>Onchocerciasis (also known as river blindness<i>)</i> is a neglected tropical disease caused by the <i>Onchocerca volvulus</i> parasitic nematode. Currently, the only approved drug for treating this disease is ivermectin, which is a broad-spectrum antiparasitic agent. However, signs of resistance towards ivermectin have started to emerge. New therapeutic agents are thus urgently needed. The OvCHT1 chitinase enzyme from <i>O. volvulus</i> has been established as a relevant biological target for combatting river blindness. The veterinary anthelmintic drug closantel has been found to be a potent, micro-molar OvCHT1 inhibitor. Herein, we investigated the chemical space of closantel and all its synthesized analogues, focusing on the analysis of their potential binding modes towards OvCHT1. First, we conducted an unsupervised hierarchical clustering to group highly similar analogues and explore structure-activity relationships. Second, we conducted a structure-based molecular docking to predict and study the binding modes of all 57 closantel analogues in the active site of OvCHT1. Third, we screened more than 4 million lead-like compounds from the ZINC library to identify other structurally similar ligands that could potentially bind to OvCHT1. The cheminformatics analysis of the closantel analogues illustrated how minor structural changes in closantel analogues can impact their OvCHT1 activity.</p><p></p>


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2174 ◽  
Author(s):  
Annalisa Maruca ◽  
Delia Lanzillotta ◽  
Roberta Rocca ◽  
Antonio Lupia ◽  
Giosuè Costa ◽  
...  

Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target features.


2018 ◽  
Vol 74 (11) ◽  
pp. 1063-1077 ◽  
Author(s):  
Oleg Borbulevych ◽  
Roger I. Martin ◽  
Lance M. Westerhoff

Conventional macromolecular crystallographic refinement relies on often dubious stereochemical restraints, the preparation of which often requires human validation for unusual species, and on rudimentary energy functionals that are devoid of nonbonding effects owing to electrostatics, polarization, charge transfer or even hydrogen bonding. While this approach has served the crystallographic community for decades, as structure-based drug design/discovery (SBDD) has grown in prominence it has become clear that these conventional methods are less rigorous than they need to be in order to produce properly predictive protein–ligand models, and that the human intervention that is required to successfully treat ligands and other unusual chemistries found in SBDD often precludes high-throughput, automated refinement. Recently, plugins to thePython-based Hierarchical ENvironment for Integrated Xtallography(PHENIX) crystallographic platform have been developed to augment conventional methods with thein situuse of quantum mechanics (QM) applied to ligand(s) along with the surrounding active site(s) at each step of refinement [Borbulevychet al.(2014),Acta CrystD70, 1233–1247]. This method (Region-QM) significantly increases the accuracy of the X-ray refinement process, and this approach is now used, coupled with experimental density, to accurately determine protonation states, binding modes, ring-flip states, water positions and so on. In the present work, this approach is expanded to include a more rigorous treatment of the entire structure, including the ligand(s), the associated active site(s) and the entire protein, using a fully automated, mixed quantum-mechanics/molecular-mechanics (QM/MM) Hamiltonian recently implemented in theDivConpackage. This approach was validated through the automatic treatment of a population of 80 protein–ligand structures chosen from the Astex Diverse Set. Across the entire population, this method results in an average 3.5-fold reduction in ligand strain and a 4.5-fold improvement inMolProbityclashscore, as well as improvements in Ramachandran and rotamer outlier analyses. Overall, these results demonstrate that the use of a structure-wide QM/MM Hamiltonian exhibits improvements in the local structural chemistry of the ligand similar to Region-QM refinement but with significant improvements in the overall structure beyond the active site.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 648
Author(s):  
del Prado ◽  
Santos ◽  
Lázaro ◽  
Salas ◽  
de Vega

Bacteriophage Phi29 DNA polymerase belongs to the protein-primed subgroup of family B DNA polymerases that use a terminal protein (TP) as a primer to initiate genome replication. The resolution of the crystallographic structure showed that it consists of an N-terminal domain with the exonuclease activity and a C-terminal polymerization domain. It also has two subdomains specific of the protein-primed DNA polymerases; the TP Regions 1 (TPR1) that interacts with TP and DNA, and 2 (TPR2), that couples both processivity and strand displacement to the enzyme. The superimposition of the structures of the apo polymerase and the polymerase in the polymerase/TP heterodimer shows that the structural changes are restricted almost to the TPR1 loop (residues 304–314). In order to study the role of this loop in binding the DNA and the TP, we changed the residues Arg306, Arg308, Phe309, Tyr310, and Lys311 into alanine, and also made the deletion mutant Δ6 lacking residues Arg306–Lys311. The results show a defective TP binding capacity in mutants R306A, F309A, Y310A, and Δ6. The additional impaired primer-terminus stabilization at the polymerization active site in mutants Y310A and Δ6 allows us to propose a role for the Phi29 DNA polymerase TPR1 loop in the proper positioning of the DNA and TP-priming 3’-OH termini at the preinsertion site of the polymerase to enable efficient initiation and further elongation steps during Phi29 TP-DNA replication.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


2018 ◽  
Vol 399 (10) ◽  
pp. 1223-1235 ◽  
Author(s):  
Andreas Porodko ◽  
Ana Cirnski ◽  
Drazen Petrov ◽  
Teresa Raab ◽  
Melanie Paireder ◽  
...  

Abstract The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Pintar ◽  
Jure Borišek ◽  
Aleksandra Usenik ◽  
Andrej Perdih ◽  
Dušan Turk

AbstractTo achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.


Sign in / Sign up

Export Citation Format

Share Document