Virtual Space Teleconferencing: Real-Time Reproduction of 3D Human Images

1995 ◽  
Vol 6 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Jun Ohya ◽  
Yasuichi Kitamura ◽  
Fumio Kishino ◽  
Nobuyoshi Terashima ◽  
Haruo Takemura ◽  
...  
2021 ◽  
Vol 24 ◽  
pp. S114
Author(s):  
S. Emerson ◽  
K. Johnston ◽  
A. Howarth ◽  
J. Schneider ◽  
M. Friesen ◽  
...  

2021 ◽  
pp. 104687812110082
Author(s):  
Omamah Almousa ◽  
Ruby Zhang ◽  
Meghan Dimma ◽  
Jieming Yao ◽  
Arden Allen ◽  
...  

Objective. Although simulation-based medical education is fundamental for acquisition and maintenance of knowledge and skills; simulators are often located in urban centers and they are not easily accessible due to cost, time, and geographic constraints. Our objective is to develop a proof-of-concept innovative prototype using virtual reality (VR) technology for clinical tele simulation training to facilitate access and global academic collaborations. Methodology. Our project is a VR-based system using Oculus Quest as a standalone, portable, and wireless head-mounted device, along with a digital platform to deliver immersive clinical simulation sessions. Instructor’s control panel (ICP) application is designed to create VR-clinical scenarios remotely, live-stream sessions, communicate with learners and control VR-clinical training in real-time. Results. The Virtual Clinical Simulation (VCS) system offers realistic clinical training in virtual space that mimics hospital environments. Those VR clinical scenarios are customizable to suit the need, with high-fidelity lifelike characters designed to deliver interactive and immersive learning experience. The real-time connection and live-stream between ICP and VR-training system enables interactive academic learning and facilitates access to tele simulation training. Conclusions. VCS system provides innovative solutions to major challenges associated with conventional simulation training such as access, cost, personnel, and curriculum. VCS facilitates the delivery of academic and interactive clinical training that is similar to real-life settings. Tele-clinical simulation systems like VCS facilitate necessary academic-community partnerships, as well as global education network between resource-rich and low-income countries.


BMJ Open ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. e050346
Author(s):  
Daniel J Laydon ◽  
Swapnil Mishra ◽  
Wes R Hinsley ◽  
Pantelis Samartsidis ◽  
Seth Flaxman ◽  
...  

ObjectiveTo measure the effects of the tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern.DesignThis is a modelling study combining estimates of real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities to account for broader national trends in addition to subnational effects from tiers.SettingThe UK at lower tier local authority (LTLA) level. 310 LTLAs were included in the analysis.Primary and secondary outcome measuresReduction in real-time reproduction number Rt.ResultsNationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9–1.6) across LTLAs, but declined to an average of 1.1 (0.86–1.42) 2 weeks later. Decline in transmission was not solely attributable to tiers. Tier 1 had negligible effects. Tiers 2 and 3, respectively, reduced transmission by 6% (5%–7%) and 23% (21%–25%). 288 LTLAs (93%) would have begun to suppress their epidemics if every LTLA had gone into tier 3 by the second national lockdown, whereas only 90 (29%) did so in reality.ConclusionsThe relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed.


2020 ◽  
Vol 30 ◽  
pp. 56-60
Author(s):  
Mark Reybrouck

Taking an epistemological stance towards music in a real-time listening situation entails a definition of music as a temporal and sounding art. This means that music cannot be described in abstract and detached terms as something “out there” in a virtual space but rather as something that impinges upon our senses in an actual “here and now.” Musical sense-making, therefore, should be considered a kind of ongoing knowledge construction with a dynamic tension between actual sensation and mental representation of sounding events. Four major dichotomies may be considered in this regard: the focal versus synoptic overview of the sounding music, the continuous/discrete processing of the sounds, the distinction between sensory experience versus cognitive economy, and the in-time/outside-of-time distinction. The author argues that a deliberate combination of these diverging approaches makes the musical experience a richer one.


Author(s):  
Wesley Ellgass ◽  
Nathan Holt ◽  
Hector Saldana-Lemus ◽  
Julian Richmond ◽  
Ali Vatankhah Barenji ◽  
...  

With the developments and applications of the advanced information technologies such as cloud computing, internet of thing, artificial intelligence and virtual reality, industry 4.0 and smart manufacturing era are coming. In this respect, one of the specific challenges is to achieve a connection of physical resources on the shop floor with virtual resources, for real-time response, real time process optimization, and simulation, which is merged by big data problem. In this respect, Digital Twins (DT) concept is introduced as a key technology, which includes physical resources, virtual resources, service system, and digital twin data. DT considers current condition of physical resource and prediction of future events to make a responsive decision. However, due to the complexity of building a digital equivalent in virtual space to its physical counterpart, very little applications have been developed with this purpose, especially in the industrial manufacturing area. Therefore, the types of data and technology required to build the DT for a manufacturing system are presented in this work, trying to develop a framework of DT based manufacturing system, which is supported by the virtual reality for virtualization of physical resources.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5504
Author(s):  
Hyang-A Park ◽  
Gilsung Byeon ◽  
Wanbin Son ◽  
Hyung-Chul Jo ◽  
Jongyul Kim ◽  
...  

Due to the recent development of information and communication technology (ICT), various studies using real-time data are now being conducted. The microgrid research field is also evolving to enable intelligent operation of energy management through digitalization. Problems occur when operating the actual microgrid, causing issues such as difficulty in decision making and system abnormalities. Using digital twin technology, which is one of the technologies representing the fourth industrial revolution, it is possible to overcome these problems by changing the microgrid configuration and operating algorithms of virtual space in various ways and testing them in real time. In this study, we proposed an energy storage system (ESS) operation scheduling model to be applied to virtual space when constructing a microgrid using digital twin technology. An ESS optimal charging/discharging scheduling was established to minimize electricity bills and was implemented using supervised learning techniques such as the decision tree, NARX, and MARS models instead of existing optimization techniques. NARX and decision trees are machine learning techniques. MARS is a nonparametric regression model, and its application has been increasing. Its performance was analyzed by deriving performance evaluation indicators for each model. Using the proposed model, it was found in a case study that the amount of electricity bill savings when operating the ESS is greater than that incurred in the actual ESS operation. The suitability of the model was evaluated by a comparative analysis with the optimization-based ESS charging/discharging scheduling pattern.


2006 ◽  
Vol 18 (4) ◽  
pp. 426-432
Author(s):  
Tetsuya Yokoyama ◽  
◽  
Hideki Tanahashi ◽  
Haruhisa Kawasaki ◽  

We proposed a method that enables to deform a soft object using a linear Finite Element Method (FEM) in real-time. In the proposed technique, since the calculation amount is reduced to <I>O</I> (<I>n</I>) (<I>n</I>: number of nodes), grasping is enabled in virtual space. In this paper, we studied grasping of a soft object taking gravity into consideration. Some simulations using a stiffness equation containing gravity demonstrated the validity of our proposal.


Sign in / Sign up

Export Citation Format

Share Document