Determination of Relative Water Content

Author(s):  
Luís González ◽  
Marco González-Vilar
Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
María Dolores Fariñas ◽  
Daniel Jimenez-Carretero ◽  
Domingo Sancho-Knapik ◽  
José Javier Peguero-Pina ◽  
Eustaquio Gil-Pelegrín ◽  
...  

Abstract Background Non-contact resonant ultrasound spectroscopy (NC-RUS) has been proven as a reliable technique for the dynamic determination of leaf water status. It has been already tested in more than 50 plant species. In parallel, relative water content (RWC) is highly used in the ecophysiological field to describe the degree of water saturation in plant leaves. Obtaining RWC implies a cumbersome and destructive process that can introduce artefacts and cannot be determined instantaneously. Results Here, we present a method for the estimation of RWC in plant leaves from non-contact resonant ultrasound spectroscopy (NC-RUS) data. This technique enables to collect transmission coefficient in a [0.15–1.6] MHz frequency range from plant leaves in a non-invasive, non-destructive and rapid way. Two different approaches for the proposed method are evaluated: convolutional neural networks (CNN) and random forest (RF). While CNN takes the entire ultrasonic spectra acquired from the leaves, RF only uses four relevant parameters resulted from the transmission coefficient data. Both methods were tested successfully in Viburnum tinus leaf samples with Pearson’s correlations between 0.92 and 0.84. Conclusions This study showed that the combination of NC-RUS technique with deep learning algorithms is a robust tool for the instantaneous, accurate and non-destructive determination of RWC in plant leaves.


2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Saraswati Prabawardani

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:UseFELayout /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif]--> <p class="MsoNormal" style="text-align: justify;"><span style="font-size: 10pt;">The measurement of plant water status such as leaf water potential (LWP) and leaf relative water content (RWC) is important part of understanding plant physiology and biomass production. Preliminary study was made to determine the optimum amount of leaf abrasion and equilibration time of sweet potato leaf inside the thermocouple psychrometer chambers. Based on the trial, the standard equilibration time curve of a Peltier thermocouple for sweet potato leaf was between 2 and 3 hours. To increase the water vapour conductance across the leaf epidermis the waxy leaf cuticle should be removed or broken by abrasion. The result showed that 4 times leaf rubbings was accepted as the most effective way to increase leaf vapour conductance of sweet potato in the psychrometer chambers. In calculating the leaf relative water content, unstressed water of sweet potato leaves require 4 hours imbibition, whereas water stressed of sweet potato leaves require 5 to 6 hours to reach the saturation time. Either leaf water potential or relative water content can be used as a parameter for plant water status in sweet potato.</span><span style="font-size: 10pt;"> </span></p>


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 928-935 ◽  
Author(s):  
Sarah T. Berger ◽  
Jason A. Ferrell ◽  
Diane L. Rowland ◽  
Theodore M. Webster

Palmer amaranth is a troublesome weed in cotton production. Yield losses of 65% have been reported from season-long Palmer amaranth competition with cotton. To determine whether water is a factor in this system, experiments were conduced in 2011, 2012, and 2013 in Citra, FL, and in Tifton, GA. In 2011, infrequent rainfall lead to drought stress. The presence of Palmer amaranth resulted in decreased soil relative water content up to 1 m in depth. Cotton stomatal conductance (gs) was reduced up to 1.8 m from a Palmer amaranth plant. In 2012 and 2013 higher than average rainfall resulted in excess water throughout the growing season. In this situation, no differences were found in soil relative water content or cottongsas a function of proximity to Palmer amaranth. A positive linear trend was found in cotton photosynthesis and yield; each parameter increased as distance from Palmer amaranth increased. Even in these well-watered conditions, daily water use of Palmer amaranth was considerably higher than that of cotton, at 1.2 and 0.49 g H20 cm−2d−1, respectively. Although Palmer amaranth removed more water from the soil profile, rainfall was adequate to replenish the profile in 2 of the 3 yr of this study. However, yield loss due to Palmer amaranth was still observed despite no change ings, indicating other factors, such as competition for light or response to neighboring plants during development, are driving yield loss.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Juan José Reyes-Pérez ◽  
Bernardo Murillo-Amador ◽  
Alejandra Nieto-Garibay ◽  
Luis G. Hernández-Montiel ◽  
Francisco H. Ruiz-Espinoza ◽  
...  

2012 ◽  
Vol 32 (2) ◽  
pp. 366-373 ◽  
Author(s):  
María Roberta Ansorena ◽  
María Victoria Agüero ◽  
María Grabriela Goñi ◽  
Sara Roura ◽  
Alejandra Ponce ◽  
...  

During postharvest, lettuce is usually exposed to adverse conditions (e.g. low relative humidity) that reduce the vegetable quality. In order to evaluate its shelf life, a great number of quality attributes must be analyzed, which requires careful experimental design, and it is time consuming. In this study, the modified Global Stability Index method was applied to estimate the quality of butter lettuce at low relative humidity during storage discriminating three lettuce zones (internal, middle, and external). The results indicated that the most relevant attributes were: the external zone - relative water content, water content , ascorbic acid, and total mesophilic counts; middle zone - relative water content, water content, total chlorophyll, and ascorbic acid; internal zone - relative water content, bound water, water content, and total mesophilic counts. A mathematical model that takes into account the Global Stability Index and overall visual quality for each lettuce zone was proposed. Moreover, the Weibull distribution was applied to estimate the maximum vegetable storage time which was 5, 4, and 3 days for the internal, middle, and external zone, respectively. When analyzing the effect of storage time for each lettuce zone, all the indices evaluated in the external zone of lettuce presented significant differences (p < 0.05). For both, internal and middle zones, the attributes presented significant differences (p < 0.05), except for water content and total chlorophyll.


Sign in / Sign up

Export Citation Format

Share Document