Toward “Wet” Implementation of Genetic Algorithm for Protein Engineering

Author(s):  
Kensaku Sakamoto ◽  
Masayuki Yamamura ◽  
Hiroshi Someya

2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.



1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan








Acta Naturae ◽  
2010 ◽  
Vol 2 (3) ◽  
pp. 47-61 ◽  
Author(s):  
V I Tishkov ◽  
S S Savin ◽  
A S Yasnaya


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.



Sign in / Sign up

Export Citation Format

Share Document