An Analysis of Proxy Signatures: Is a Secure Channel Necessary?

Author(s):  
Jung-Yeun Lee ◽  
Jung Hee Cheon ◽  
Seungjoo Kim
Keyword(s):  
2020 ◽  
Vol 62 (5-6) ◽  
pp. 287-293
Author(s):  
Felix Günther

AbstractSecure connections are at the heart of today’s Internet infrastructure, protecting the confidentiality, authenticity, and integrity of communication. Achieving these security goals is the responsibility of cryptographic schemes, more specifically two main building blocks of secure connections. First, a key exchange protocol is run to establish a shared secret key between two parties over a, potentially, insecure connection. Then, a secure channel protocol uses that shared key to securely transport the actual data to be exchanged. While security notions for classical designs of these components are well-established, recently developed and standardized major Internet security protocols like Google’s QUIC protocol and the Transport Layer Security (TLS) protocol version 1.3 introduce novel features for which supporting security theory is lacking.In my dissertation [20], which this article summarizes, I studied these novel and advanced design aspects, introducing enhanced security models and analyzing the security of deployed protocols. For key exchange protocols, my thesis introduces a new model for multi-stage key exchange to capture that recent designs for secure connections establish several cryptographic keys for various purposes and with differing levels of security. It further introduces a formalism for key confirmation, reflecting a long-established practical design criteria which however was lacking a comprehensive formal treatment so far. For secure channels, my thesis captures the cryptographic subtleties of streaming data transmission through a revised security model and approaches novel concepts to frequently update key material for enhanced security through a multi-key channel notion. These models are then applied to study (and confirm) the security of the QUIC and TLS 1.3 protocol designs.


Author(s):  
Christoph Lipps ◽  
Sachinkumar Bavikatti Mallikarjun ◽  
Matthias Strufe ◽  
Christopher Heinz ◽  
Christoph Grimm ◽  
...  

Author(s):  
Raja Naeem Akram ◽  
Konstantinos Markantonakis ◽  
Keith Mayes ◽  
Pierre-Francois Bonnefoi ◽  
Damien Sauveron ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 73-88
Author(s):  
Yasir Arfat Malkani ◽  
Moez Ahmed Malik ◽  
Lachhman Das Dhomeja ◽  
Bisharat Rasool Memon ◽  
Abdul Waheed Mahesar

Due to the rapid growth of small and smart hand-held devices, mobile ad hoc networks (MANets) are becoming very common nowadays. MANets may consist of a number of small hand-held devices having limited resources in terms of memory, battery and processing power. In order to provide services to the users, these devices are capable of communicating with each other through some radio technology, such as WiFi, Bluetooth or Infrared. Since radio channels are inherently vulnerable to various security threats, it requires that devices in MANets must establish a secure association amongst themselves before exchanging any sensitive information or data. The process of establishing a secure channel between two devices is referred to as device pairing or device association. Device pairing do not rely on traditional mechanisms for security due to the impulsive and ad hoc interactions among the devices. Due to this, researchers have proposed many schemes/protocols to deal with this issue; however, the issue of group pairing (i.e. secure association of more than two devices) is less addressed issue in the literature yet. There could be many scenarios (such as confidential office meetings, paring of group of home appliances in smart-homes, etc) of MANets, where secure group communications is desired. Consequently, this research focuses on this issue and proposes a QR (quick response) code based scheme to establish a secure channel between a numbers of devices. The proposed system is implemented and tested on modern hand-held devices and a usability study of the implemented system is also carried out.


Author(s):  
G Sriman Narayana ◽  
Kuruva Arjun Kumar

In privacy-enhancing technology, it has been inevitably challenging to strike a maintain balance between privacy, efficiency and usability (utility). We propose a highly practical and efficient approach for privacy-preserving integration and sharing of datasets among a group of participants. At the heart of our solution is a new interactive protocol, Secure Channel. Through Secure Channel, each participant is able to randomize their datasets via an independent and untrusted third party, such that the resulting dataset can be merged with other randomized datasets contributed by other participants group in a privacy-preserving manner. Our process does not require any public or key sharing between participants in order to integrate different datasets. This, in turn, leads to a user can understand and use easily and scalable solution. Moreover, the accuracy of a randomized dataset which are returned by the third party can be securely verified by the other participant of group. We further demonstrate Secure Channel’s general utilities, using it to construct a structure preserving data integration protocol. This is mainly useful for, good quality integration of network traffic data.


Sign in / Sign up

Export Citation Format

Share Document