Molecular Movements and Translocations Controlled by Transition Metals and Signaled by Light Emission

Author(s):  
Valeria Amendola ◽  
Luigi Fabbrizzi ◽  
Carlo Mangano ◽  
Piersandro Pallavicini

1996 ◽  
Vol 452 ◽  
Author(s):  
S. Veprek ◽  
Th. Wirschem ◽  
J. Dian ◽  
S. Perná ◽  
R. Merica ◽  
...  

AbstractThe nc-Si/a-SiO2composite thin films doped with tungsten show very fast and efficient photoluminescence (PL). In order to obtain insight into the PL mechanism we have performed a comparative study with other metals. The results lend support to the suggested mechanism which includes the photogeneration of charge carriers due to efficient absorption of the excitation UV light in the silicon nanocrystals followed by energy transfer to the Wn+radiative center from which the light emission occurs.



Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.



Author(s):  
R.W. Carpenter

Interest in precipitation processes in silicon appears to be centered on transition metals (for intrinsic and extrinsic gettering), and oxygen and carbon in thermally aged materials, and on oxygen, carbon, and nitrogen in ion implanted materials to form buried dielectric layers. A steadily increasing number of applications of microanalysis to these problems are appearing. but still far less than the number of imaging/diffraction investigations. Microanalysis applications appear to be paced by instrumentation development. The precipitation reaction products are small and the presence of carbon is often an important consideration. Small high current probes are important and cryogenic specimen holders are required for consistent suppression of contamination buildup on specimen areas of interest. Focussed probes useful for microanalysis should be in the range of 0.1 to 1nA, and estimates of spatial resolution to be expected for thin foil specimens can be made from the curves shown in Fig. 1.



Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).



Author(s):  
Gisèle Nicolas ◽  
Jean-Marie Bassot ◽  
Marie-Thérèse Nicolas

The use of fast-freeze fixation (FFF) followed by freeze-substitution (FS) brings substantial advantages which are due to the extreme rapidity of this fixation compared to the conventional one. The initial step, FFF, physically immobilizes most molecules and therefore arrests the biological reactions in a matter of milliseconds. The second step, FS, slowly removes the water content still in solid state and, at the same time, chemically fixes the other cell components in absence of external water. This procedure results in an excellent preservation of the ultrastructure, avoids osmotic artifacts,maintains in situ most soluble substances and keeps up a number of cell activities including antigenicities. Another point of interest is that the rapidity of the initial immobilization enables the capture of unstable structures which, otherwise, would slip towards a more stable state. When combined with electrophysiology, this technique arrests the ultrastructural modifications at a well defined state, allowing a precise timing of the events.We studied the epithelium of the elytra of the scale-worm, Harmothoe lunulata which has excitable, conductible and bioluminescent properties. The intracellular sites of the light emission are paracrystals of endoplasmic reticulum (PER), named photosomes (Fig.1). They are able to flash only when they are coupled with plasma membrane infoldings by dyadic or triadic junctions (Fig.2) basically similar to those of the striated muscle fibers. We have studied them before, during and after stimulation. FFF-FS showed that these complexes are labile structures able to diffentiate and dedifferentiate within milliseconds. Moreover, a transient network of endoplasmic reticulum was captured which we have named intermediate endoplasmic reticulum (IER) surrounding the PER (Fig.1). Numerous gap junctions are found in the membranous infoldings of the junctional complexes (Fig.3). When cryofractured, they cleave unusually (Fig.4-5). It is tempting to suggest that they play an important role in the conduction of the excitation.





1971 ◽  
Vol 32 (C1) ◽  
pp. C1-74-C1-75 ◽  
Author(s):  
K. ENDO ◽  
Y. FUJITA ◽  
R. KIMURA ◽  
T. OHOYAMA ◽  
M. TERADA


1974 ◽  
Vol 35 (C6) ◽  
pp. C6-184-C6-184
Author(s):  
J. BINDER ◽  
G. KAINDL ◽  
D. SALOMON ◽  
G. WORTMANN


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-503-C8-506 ◽  
Author(s):  
J. B. Van Zytveld


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-423-C8-426
Author(s):  
S. N. Khanna ◽  
F. Cyrot-Lackmann


Sign in / Sign up

Export Citation Format

Share Document