Multiple Forms of Activity-Dependent Plasticity Enhance Information Transfer at a Dynamic Synapse

Author(s):  
Bruce Graham
1998 ◽  
Vol 31 ◽  
pp. S324
Author(s):  
Nobuko Mataga ◽  
Brian G. Condie ◽  
Sayaka Fujishima ◽  
Takao K. Hensch

2021 ◽  
pp. 1-23
Author(s):  
Roman Vuillaume ◽  
Jhunlyn Lorenzo ◽  
Stéphane Binczak ◽  
Sabir Jacquir

Abstract Postsynaptic ionotropic receptors critically shape synaptic currents and underpin their activity-dependent plasticity. In recent years, regulation of expression of these receptors by slow inward and outward currents mediated by gliotransmitter release from astrocytes has come under scrutiny as a potentially important mechanism for the regulation of synaptic information transfer. In this study, we consider a model of astrocyte-regulated synapses to investigate this hypothesis at the level of layered networks of interacting neurons and astrocytes. Our simulations hint that gliotransmission sustains the transfer function across layers, although it decorrelates the neuronal activity from the signal pattern. Overall, our results make clear how astrocytes could transform neuronal activity by inducing a lowfrequency modulation of postsynaptic activity.


2018 ◽  
Vol 129 (8) ◽  
pp. e111
Author(s):  
V. Kirsch ◽  
S. Becker-Bense ◽  
A. Berman ◽  
E. Kierig ◽  
B. Ertl-Wagner ◽  
...  

2022 ◽  
Author(s):  
Alma Rodenas-Ruano ◽  
Kaoutsar Nasrallah ◽  
Stefano Lutzu ◽  
Maryann Castillo ◽  
Pablo E. Castillo

The dentate gyrus is a key relay station that controls information transfer from the entorhinal cortex to the hippocampus proper. This process heavily relies on dendritic integration by dentate granule cells (GCs) of excitatory synaptic inputs from medial and lateral entorhinal cortex via medial and lateral perforant paths (MPP and LPP, respectively). N-methyl-D-aspartate receptors (NMDARs) can contribute significantly to the integrative properties of neurons. While early studies reported that excitatory inputs from entorhinal cortex onto GCs can undergo activity-dependent long-term plasticity of NMDAR-mediated transmission, the input-specificity of this plasticity along the dendritic axis remains unknown. Here, we examined the NMDAR plasticity rules at MPP-GC and LPP-GC synapses using physiologically relevant patterns of stimulation in acute rat hippocampal slices. We found that MPP-GC, but not LPP-GC synapses, expressed homosynaptic NMDAR-LTP. In addition, induction of NMDAR-LTP at MPP-GC synapses heterosynaptically potentiated distal LPP-GC NMDAR plasticity. The same stimulation protocol induced homosynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-LTP at MPP-GC but heterosynaptic AMPAR-LTD at distal LPP synapses, demonstrating that NMDAR and AMPAR are governed by different plasticity rules. Remarkably, heterosynaptic but not homosynaptic NMDAR-LTP required Ca2+ release from intracellular, ryanodine-dependent Ca2+ stores. Lastly, the induction and maintenance of both homo- and heterosynaptic NMDAR-LTP were blocked by GluN2D antagonism, suggesting the recruitment of GluN2D-containing receptors to the synapse. Our findings uncover a mechanism by which distinct inputs to the dentate gyrus may interact functionally and contribute to hippocampal-dependent memory formation.


Author(s):  
Ulf Ziemann

This chapter reviews effects of central nervous system (CNS) active drugs specifically on activity-dependent plasticity and learning. The rationale for choosing this focus is the existing evidence that CNS active drugs have an impact on rehabilitation success after stroke to a relevant extent only if coupled with task-specific practice. This chapter reviews pharmacological modulation of stimulation-induced long-term potentiation (LTP) in animal and human studies because synaptic plasticity in the form of LTP is a basic mechanism of learning and memory processes. Next, the chapter reviews the evidence of CNS active drugs on learning in animal and human studies. In the third part, the impact of CNS active drugs on neurorehabilitation of stroke patients is surveyed and the translational cascade from basic research to clinical studies is described. Finally, limitations of the current studies, open questions, and future directions are discussed. This chapter demonstrates significant impact of neuropharmacology on activity-dependent plasticity and learning.


Sign in / Sign up

Export Citation Format

Share Document