Performance tuning in a customizable collector

Author(s):  
Giuseppe Attardi ◽  
Tito Flagella ◽  
Pietro Iglio
Keyword(s):  
1994 ◽  
Vol 22 (2) ◽  
pp. 48-59 ◽  
Author(s):  
A. Singhal ◽  
A. J. Goldberg

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Saeideh Alipoori ◽  
M. M. Torkzadeh ◽  
Saeedeh Mazinani ◽  
Seyed Hamed Aboutalebi ◽  
Farhad Sharif

AbstractThe significant breakthroughs of flexible gel electrolytes have attracted extensive attention in modern wearable electronic gadgets. The lack of all-around high-performing gels limits the advantages of such devices for practical applications. To this end, developing a multi-functional gel architecture with superior ionic conductivity while enjoying good mechanical flexibility is a bottleneck to overcome. Herein, an architecturally engineered gel, based on PVA and H3PO4 with different molecular weights of PVA for various PVA/H3PO4 ratios, was developed. The results show the dependence of ionic conductivity on molecular weight and also charge carrier concentration. Consequently, fine-tuning of PVA-based gels through a simple yet systematic and well-regulated strategy to achieve highly ion-conducting gels, with the highest ionic conductivity of 14.75 ± 1.39 mS cm-1 have been made to fulfill the requirement of flexible devices. More importantly, gel electrolytes possess good mechanical robustness while exhibiting high-elasticity (%766.66 ± 59.73), making it an appropriate candidate for flexible devices.


2015 ◽  
Vol 28 ◽  
pp. 176-194 ◽  
Author(s):  
Christopher Chambers ◽  
Christopher Scaffidi
Keyword(s):  

Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


Sign in / Sign up

Export Citation Format

Share Document