scholarly journals Long-Term Cell Fate Tracking of Individual Renal Cells Using Serial Intravital Microscopy

Author(s):  
Ina Maria Schiessl ◽  
Katharina Fremter ◽  
James L. Burford ◽  
Hayo Castrop ◽  
Janos Peti-Peterdi
Author(s):  
Ina Maria Schiessl ◽  
Katharina Fremter ◽  
James L. Burford ◽  
Hayo Castrop ◽  
Janos Peti-Peterdi

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yue Liu ◽  
Zongjin Li

AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.


2015 ◽  
Vol 3 (2) ◽  
pp. 383-390 ◽  
Author(s):  
Yon Jin Chuah ◽  
Shreyas Kuddannaya ◽  
Min Hui Adeline Lee ◽  
Yilei Zhang ◽  
Yuejun Kang

Surface silanization with 3-aminopropyl triethoxy silane (APTES) ± glutaraldehyde (GA) enhanced the biocompatibility of poly(dimethylsiloxane) surfaces for long term cell culture investigation.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


2014 ◽  
Vol 184 (10) ◽  
pp. 2779-2790 ◽  
Author(s):  
Sorabh Kapoor ◽  
Ekaterine Berishvili ◽  
Sriram Bandi ◽  
Sanjeev Gupta

MethodsX ◽  
2019 ◽  
Vol 6 ◽  
pp. 2468-2475 ◽  
Author(s):  
C. Elizabeth Caldon ◽  
Andrew Burgess

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 446-446
Author(s):  
Alejo E Rodriguez-Fraticelli ◽  
Caleb S Weinreb ◽  
Allon Moshe Klein ◽  
Shou-Wen Wang ◽  
Fernando D Camargo

Blood regeneration upon transplantation relies on the activity of long-term repopulating hematopoietic stem cells (LT-HSCs). One of the major controversies in hematopoiesis relates to the apparently different properties that HSCs have in transplantation versus unperturbed settings. In unperturbed steady state hematopoiesis, the most potent HSCs appear to be mostly dormant, and only producing platelet-lineage cells. In turn, upon transplant, even a single transplanted HSC can actively divide and regenerate hundreds of millions of blood progenitors of all lineages. It would thus appear that HSCs have different fundamental properties in each study system. However, most transplantation studies have only tracked the lineage output of the transplanted HSC clones, and rarely the regeneration of the HSC compartment itself. In addition, clonal assays have not been performed at sufficient resolution to fully capture the diversity and clonal complexity of the regenerated HSC compartment. Here, we have used expressible barcodes, which can be sequenced in conventional single cell RNAseq assays, to simultaneously record the functional outcomes and transcriptional states of thousands of HSCs. Our analysis revealed multiple clonal HSC behaviors following transplantation that drastically differ in their differentiation activity, lineage-bias and self-renewal. Surprisingly, we witnessed a large fraction of clones that efficiently repopulate the HSC compartment but show limited contribution to differentiated progeny. Furthermore, these inactive clones have increased competitive multilineage serial repopulating capacity, implying that shortly after transplant a subset of clones reestablishes the native-like LT-HSC behaviors. Our results also argue that this clonal distribution of labor is controlled by cell autonomous, heritable properties (i.e. the epigenetic cell state). Then, using only our clonal readouts to segregate single HSC transcriptomes, we unveiled the transcriptional signatures that associated with unique HSC outcomes (platelet bias, clonal expansion, dormancy, etc.) and unraveled, for the first time, a gene signature for functional long-term serially repopulating clones. We interrogated the drivers of this cell state using an in vivo inducible CRISPR screening and identified 5 novel regulators that are required to regenerate the HSC compartment in a cell autonomous fashion. In conclusion, we demonstrate that functional LT-HSCs share more similar properties in native and transplantation hematopoiesis than previously expected. Consequently, we unveil a definition of the essential, common functional properties of HSCs and the molecular programs that control them. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3563-3563 ◽  
Author(s):  
Brahmananda Reddy Chitteti ◽  
Bradley Poteat ◽  
Sonia Rodriguez- Rodriquez ◽  
Nadia Carlesso ◽  
Melissa A. Kacena ◽  
...  

Abstract Hematopoietic Stem Cell (HSC) self-renewal and multilineage differentiation potential is governed by multiple intrinsic and extrinsic parameters. Collectively, these parameters dictate the fate of HSC and underscore the heterogeneity observed within phenotypically defined groups of stem cells. While cell cycle status and the genetic profile of HSCs are critical intrinsic modulators of cell fate, interactions with cytokines, growth factors, and cellular elements of the hematopoietic niche (HN) are key extrinsic regulators of stem cell function. We examined the impact of cellular elements of the HN on stem cell fate and maintenance by analyzing the combined effect of calvaria-derived osteoblasts (OB) and mesenchymal stromal cells (MSC) on cultured murine HSC. Murine bone marrow-derived KSL cells were co-cultured with OB alone, MSC alone, or with mixtures of OB and MSC at different ratios for one week. Cultures were supplemented with SCF, Fl-3, Tpo, IL-3, IL-6, IGF1 & OPN. OB alone, maintained the functional properties of cultured HSCs significantly better than MSC thus corroborating the importance of OB in the overall competence of the HN. On day 7, the fold-increase in the number of LSK cells was 1473 ± 291 in OB cultures, 561 ± 159 in MSC cultures, and 603 ± 263 in OB+MSC cultures (n= 4 for all 3 groups). During the same 7 day-period, the number of CFU in progeny cells expanded 74 ± 15 fold in OB cultures, 23 ± 2 fold in MSC cultures, and 27 ± 15 in OB+MSC cultures (n=3 for all groups). The substantial increase in KSL progeny in OB cultures on day 7 was accompanied by a high percentage of cells in active phases of cell cycle (% G0/G1 = 72.5 ± 7.0, n=3) compared to their counterparts in MSC or OB+MSC cultures. In addition, co-culture of KSL cells with OB resulted in an unexpected higher maintenance of the Sca-1+Lin- phenotype (26.5% ± 2.8%) relative to MSC cultures (4.6% ± 1.0%) and OB+MSC cultures (11.7% ± 1.8%; n=3 for all). Only some of these results were reproduced when KSL cells were cultured in OB-conditioned medium suggesting that cell-to-cell contact may be essential for the observed activities. To assess the in vivo potential of LSK cells maintained in these cultures, the 10-day expansion equivalent of 1,000 LSK cells were competitively transplanted in lethally irradiated congenic mice and chimerism was monitored for the next 4 months. At 1 and 2 months post-transplantation, the level of chimerism sustained by LSK cells maintained in OB cultures for 10 days surpassed or was slightly lower than that observed with freshly isolated LSK cells (72.7% vs 59.7% and 57.4% vs 74.7%, respectively) suggesting that OB culture conditions effectively expanded short-term repopulating cells. At 4 months post-transplantation, mice receiving freshly isolated LSK cells were 83.6% ± 1.8% chimeric compared to 53.7% ± 16.1% for mice transplanted with cells from OB cultures and 31.9% ± 21.4% for mice receiving cells from OB+MSC cultures. Overall, these data suggest that OB-LSK interactions promote the maintenance of both short-term and long-term repopulating cells while MSC suppress the OB-mediated activity. To investigate the mechanism of OB-mediated maintenance of stem cell phenotype and function, we examined Notch signaling using Real-Time Q-PCR on cells maintained in culture for 7 days. Relative to the expression in KSL cells, expression of Notch 2 was elevated in OB cultures and suppressed over 2-fold in cultures of MSC and OB+MSC. Similarly, the expression of Jagged 1 and 2, Delta 1 and 4, Hes 1 and 5, Deltex, and SKP2 was increased in OB cultures and suppressed in MSC and OB+MSC cultures. Collectively, these data illustrate that cell-to-cell contact between OB and KSL cells promotes the in vitro maintenance of long-term and short-term repopulating cells and suggest that this stem cell function-promoting activity is induced in part by the upregulation of Notch-mediated signaling between HSCs and osteoblasts. The suppressive effect imparted by MSC on stem cell maintenance compared to cultures of OB alone suggest that these two cellular elements of the HN have opposite effects on the fate and function of stem cells.


Sign in / Sign up

Export Citation Format

Share Document