High-Resolution Simulation of the Global Coupled Atmosphere-Ocean System: Description and Preliminary Outcomes of CFES (CGCM for the Earth Simulator)

Author(s):  
Nobumasa Komori ◽  
Akira Kuwano-Yoshida ◽  
Takeshi Enomoto ◽  
Hideharu Sasaki ◽  
Wataru Ohfuchi
2006 ◽  
Vol 14 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Michel Desgagné ◽  
Ron McTaggart-Cowan ◽  
Wataru Ohfuchi ◽  
Gilbert Brunet ◽  
Peter Yau ◽  
...  

The Large Atmospheric Computation on the Earth Simulator (LACES) project is a joint initiative between Canadian and Japanese meteorological services and academic institutions that focuses on the high resolution simulation of Hurricane Earl (1998). The unique aspect of this effort is the extent of the computational domain, which covers all of North America and Europe with a grid spacing of 1 km. The Canadian Mesoscale Compressible Community (MC2) model is shown to parallelize effectively on the Japanese Earth Simulator (ES) supercomputer; however, even using the extensive computing resources of the ES Center (ESC), the full simulation for the majority of Hurricane Earl's lifecycle takes over eight days to perform and produces over 5.2 TB of raw data. Preliminary diagnostics show that the results of the LACES simulation for the tropical stage of Hurricane Earl's lifecycle compare well with available observations for the storm. Further studies involving advanced diagnostics have commenced, taking advantage of the uniquely large spatial extent of the high resolution LACES simulation to investigate multiscale interactions in the hurricane and its environment. It is hoped that these studies will enhance our understanding of processes occurring within the hurricane and between the hurricane and its planetary-scale environment.


2012 ◽  
Vol 140 (10) ◽  
pp. 3300-3326 ◽  
Author(s):  
Xiaoming Sun ◽  
Ana P. Barros

Abstract The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the North American Regional Reanalysis (NARR; 32 km × 32 km) and the NCEP Final Operational Global Analysis (NCEP FNL; 1° × 1°). Simulated fields were evaluated against rain gauge, radar, and satellite data; sounding observations; and the best track from the National Hurricane Center (NHC). Overall, the NCEP FNL forced simulation (WRF_FNL) captures storm structure and evolution more accurately than the NARR forced simulation (WRF_NARR), benefiting from the hurricane initialization scheme in the NCEP FNL. Further, the performance of WRF_NARR is also negatively affected by a previously documented low-level warm bias in NARR. These factors lead to excessive precipitation in the Piedmont region, delayed rainfall in Alabama, as well as spatially displaced and unrealistically extreme rainbands during its passage over the southern Appalachians. Spatial filtering of the simulated precipitation fields confirms that the storm characteristics inherited from the forcing are critical to capture the storm’s impact at local places. Compared with the NHC observations, the storm is weaker in both NARR and NCEP FNL (up to Δp ~ 5 hPa), yet it is persistently deeper in all WRF simulations forced by either dataset. The surface wind fields are largely overestimated. This is attributed to the underestimation of surface roughness length over land, leading to underestimation of surface drag, reducing low-level convergence, and weakening the dissipation of the simulated cyclone.


2010 ◽  
Vol 27 (3) ◽  
pp. 685-704 ◽  
Author(s):  
Qingqing Li ◽  
Yihong Duan ◽  
Hui Yu ◽  
Gang Fu

Sign in / Sign up

Export Citation Format

Share Document