Three-Dimensional Integral Television Using High-Resolution Video System with 2000 Scanning Lines

Author(s):  
Fumio Okano ◽  
Jun Arai ◽  
Kohji Mitani ◽  
Makoto Okui
2007 ◽  
Author(s):  
Fumio Okano ◽  
Masahiro Kawakita ◽  
Jun Arai ◽  
Hisayuki Sasaki ◽  
Takayuki Yamashita ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250559
Author(s):  
Shintaro Yagi ◽  
Takashi Ito ◽  
Hisaya Shirai ◽  
Siyuan Yao ◽  
Yuki Masano ◽  
...  

Objective Microsurgery using conventional optical microscopes or surgical loupes features a limited field of view and imposes a serious strain on surgeons especially during long surgeries. Here we advocate the micro- and macro-borderless surgery (MMBS) using a novel high-resolution (4K) three-dimensional (3D) video system. This study aimed to confirm the applicability of this concept in several surgical procedures. Methods We evaluated the possible use and efficacy of MMBS in the following experiments in porcine subjects. Experiment 1 (non-inferiority test) consisted of dissection and anastomosis of carotid artery, portal vein, proper hepatic artery, and pancreatoduodenectomy with surgical loupe versus MMBS. Experiment 2 (feasibility test) consisted of intra-abdominal and intra-thoracic smaller arteries anastomosed by MMBS as a pre-clinical setting. Experiment 3 (challenge on new surgery) consisted of orthotopic liver transplantation of the graft from a donor after circulatory death maintained by machine perfusion. Circulation of the cardiac sheet with a vascular bed in experiment 2 and liver graft during preservation in experiment 3 was evaluated with indocyanine green fluorescence imaging equipped with this system. Results Every procedure was completed by MMBS. The operator and assistants could share the same field of view in heads-up status. The focal depth was deep enough not to be disturbed by pulsing blood vessels or respiratory movement. The tissue circulation could be evaluated using fluorescence imaging of this system. Conclusions MMBS using the novel system is applicable to various surgeries and valuable for both fine surgical procedures and high-level surgical education.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document