scholarly journals Micro- and macro-borderless surgery using a newly developed high-resolution (4K) three-dimensional video system

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250559
Author(s):  
Shintaro Yagi ◽  
Takashi Ito ◽  
Hisaya Shirai ◽  
Siyuan Yao ◽  
Yuki Masano ◽  
...  

Objective Microsurgery using conventional optical microscopes or surgical loupes features a limited field of view and imposes a serious strain on surgeons especially during long surgeries. Here we advocate the micro- and macro-borderless surgery (MMBS) using a novel high-resolution (4K) three-dimensional (3D) video system. This study aimed to confirm the applicability of this concept in several surgical procedures. Methods We evaluated the possible use and efficacy of MMBS in the following experiments in porcine subjects. Experiment 1 (non-inferiority test) consisted of dissection and anastomosis of carotid artery, portal vein, proper hepatic artery, and pancreatoduodenectomy with surgical loupe versus MMBS. Experiment 2 (feasibility test) consisted of intra-abdominal and intra-thoracic smaller arteries anastomosed by MMBS as a pre-clinical setting. Experiment 3 (challenge on new surgery) consisted of orthotopic liver transplantation of the graft from a donor after circulatory death maintained by machine perfusion. Circulation of the cardiac sheet with a vascular bed in experiment 2 and liver graft during preservation in experiment 3 was evaluated with indocyanine green fluorescence imaging equipped with this system. Results Every procedure was completed by MMBS. The operator and assistants could share the same field of view in heads-up status. The focal depth was deep enough not to be disturbed by pulsing blood vessels or respiratory movement. The tissue circulation could be evaluated using fluorescence imaging of this system. Conclusions MMBS using the novel system is applicable to various surgeries and valuable for both fine surgical procedures and high-level surgical education.

2007 ◽  
Vol 225 (2) ◽  
pp. 109-117 ◽  
Author(s):  
G. J. KAZAKIA ◽  
J. J. LEE ◽  
M. SINGH ◽  
R. F. BIGLEY ◽  
R. B. MARTIN ◽  
...  

2007 ◽  
Author(s):  
Fumio Okano ◽  
Masahiro Kawakita ◽  
Jun Arai ◽  
Hisayuki Sasaki ◽  
Takayuki Yamashita ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Author(s):  
Badrinath Roysam ◽  
Hakan Ancin ◽  
Douglas E. Becker ◽  
Robert W. Mackin ◽  
Matthew M. Chestnut ◽  
...  

This paper summarizes recent advances made by this group in the automated three-dimensional (3-D) image analysis of cytological specimens that are much thicker than the depth of field, and much wider than the field of view of the microscope. The imaging of thick samples is motivated by the need to sample large volumes of tissue rapidly, make more accurate measurements than possible with 2-D sampling, and also to perform analysis in a manner that preserves the relative locations and 3-D structures of the cells. The motivation to study specimens much wider than the field of view arises when measurements and insights at the tissue, rather than the cell level are needed.The term “analysis” indicates a activities ranging from cell counting, neuron tracing, cell morphometry, measurement of tracers, through characterization of large populations of cells with regard to higher-level tissue organization by detecting patterns such as 3-D spatial clustering, the presence of subpopulations, and their relationships to each other. Of even more interest are changes in these parameters as a function of development, and as a reaction to external stimuli. There is a widespread need to measure structural changes in tissue caused by toxins, physiologic states, biochemicals, aging, development, and electrochemical or physical stimuli. These agents could affect the number of cells per unit volume of tissue, cell volume and shape, and cause structural changes in individual cells, inter-connections, or subtle changes in higher-level tissue architecture. It is important to process large intact volumes of tissue to achieve adequate sampling and sensitivity to subtle changes. It is desirable to perform such studies rapidly, with utmost automation, and at minimal cost. Automated 3-D image analysis methods offer unique advantages and opportunities, without making simplifying assumptions of tissue uniformity, unlike random sampling methods such as stereology.12 Although stereological methods are known to be statistically unbiased, they may not be statistically efficient. Another disadvantage of sampling methods is the lack of full visual confirmation - an attractive feature of image analysis based methods.


Sign in / Sign up

Export Citation Format

Share Document