Retroviral Gene Transduction into T Cell Progenitors for Analysis of T Cell Development in the Thymus

Author(s):  
Ryunosuke Muro ◽  
Hiroshi Takayanagi ◽  
Takeshi Nitta
1999 ◽  
Vol 18 (10) ◽  
pp. 2793-2802 ◽  
Author(s):  
Bianca Blom ◽  
Mirjam H.M. Heemskerk ◽  
Martie C.M. Verschuren ◽  
Jacques J.M. van Dongen ◽  
Alexander P.A. Stegmann ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1211-1211
Author(s):  
Takayuki Hoshii ◽  
Atsuo Kasada ◽  
Tomoki Hatakeyama ◽  
Masashi Ohtani ◽  
Yuko Tadokoro ◽  
...  

Abstract mTOR is a serine/threonine kinase that has a central role in the regulation of cell growth and cell metabolism and forms two functionally different complexes, named mTORC1 and mTORC2. Despite the effectiveness of rapamycin, an allosteric mTOR inhibitor, in immunosuppression, the precise roles of mTORCs in T-cell development remain unclear. Here we show that mTORC1 plays a critical role in the earliest development of T-cell progenitors. To understand the physiological role of mTORC1 in T-cell development, we evaluated the effects of mTORC1 inhibition by rapamycin treatment or the genetic deletion of the Raptor gene, an essential component of mTORC1. Raptor deficiency dramatically inhibited the development of CD4/CD8 double-positive (DP) cells. Rapamycin treatment produced similar defects, but to a lesser extent. Deficiency of Raptor, but not Rictor, a mTORC2 component, resulted in abnormality of cell cycle of early T-cell progenitors, associated with instability of the Cyclin D3/CDK6 complex, indicating that mTORC1 and 2 control T-cell development in different manners. When we treated T-cells with a proteasome inhibitor, MG-132, in vitro, the reduction of Cyclin D3 and CDK6 by mTORC1 inactivation was reversed. These data suggest that mTORC1 activity may control the Cyclin D3/CDK6 complex via post-transcriptional mechanisms. In a model of myeloproliferative neoplasm (MPN) and T-cell leukemia (T-ALL) evoked by Kras activation, rapamycin treatment prevents development of T-ALL, but not MPN. After the onset of T-ALL, rapamycin-insensitive Notch-driven T-ALL cells survived in vivo. Raptor deficiency dramatically inhibited proliferation of oncogenic Kras–expressing T-cell progenitors and prevents the development of T-ALL, but not MPN. In contrast to T-cell progenitors, cell cycle of myeloid progenitors was not affected by mTORC1 inactivation. Phosphorylation of p70S6K and 4E-BP1, direct substrates of mTORC1, was apparently decreased in Raptor-deficient myeloid cells. Interestingly, consistent with hypo-phosphorylation of p70S6K and 4E-BP1, rates of newly synthesized protein were significantly reduced in cycling Raptor-deficient progenitors. These data indicate that the impact of mTORC1 deficiency on cell cycle status varies substantially depending on the cell context. In addition, we evaluated the effect of hyperactivation of mTORC1 by Tsc1 deletion on the behavior of T-ALL. Tsc1 deficiency shortened survival, and promoted the cell proliferation, as well as the dissemination of active Notch-driven T-ALL cells in non-hematopoietic tissues. However, strikingly, Raptor deficiency resulted in efficient leukemia eradication. Thus, understanding the cell-context-dependent role of mTORC1 illustrates the potential importance of mTOR signals as therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 209 (8) ◽  
pp. 1409-1417 ◽  
Author(s):  
Vera C. Martins ◽  
Eliana Ruggiero ◽  
Susan M. Schlenner ◽  
Vikas Madan ◽  
Manfred Schmidt ◽  
...  

Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell–deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2−/−γc−/−KitW/Wv mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2−/−γc−/−KitW/Wv hosts, γc-mediated signals alone played a key role in the competition between thymus-resident and bone marrow–derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.


2019 ◽  
Vol 3 (3) ◽  
pp. 461-475 ◽  
Author(s):  
Ornellie Bernadin ◽  
Fouzia Amirache ◽  
Anais Girard-Gagnepain ◽  
Ranjita Devi Moirangthem ◽  
Camille Lévy ◽  
...  

Abstract T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7–stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC−/− engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC−/− recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.


Sign in / Sign up

Export Citation Format

Share Document