Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics

Author(s):  
Jean Simonnet ◽  
Louis Richevaux ◽  
Desdemona Fricker
1994 ◽  
Vol 52 (1) ◽  
pp. A11
Author(s):  
M.T. Espanol ◽  
L. Litt ◽  
L.-H. Chang ◽  
T.L. James ◽  
P.R. Weinstein ◽  
...  

2002 ◽  
Vol 35 (1) ◽  
pp. 63-87 ◽  
Author(s):  
Shimon Marom ◽  
Goded Shahaf

1. Introduction 631.1 Outline 631.2 Universals versus realizations in the study of learning and memory 642. Large random cortical networks developing ex vivo 652.1 Preparation 652.2 Measuring electrical activity 673. Spontaneous development 693.1 Activity 693.2 Connectivity 704. Consequences of spontaneous activity: pharmacological manipulations 724.1 Structural consequences 724.2 Functional consequences 735. Effects of stimulation 745.1 Response to focal stimulation 745.2 Stimulation-induced changes in connectivity 746. Embedding functionality in real neural networks 776.1 Facing the physiological definition of ‘reward’: two classes of theories 786.2 Closing the loop 797. Concluding remarks 848. Acknowledgments 859. References 85The phenomena of learning and memory are inherent to neural systems that differ from each other markedly. The differences, at the molecular, cellular and anatomical levels, reflect the wealth of possible instantiations of two neural learning and memory universals: (i) an extensive functional connectivity that enables a large repertoire of possible responses to stimuli; and (ii) sensitivity of the functional connectivity to activity, allowing for selection of adaptive responses. These universals can now be fully realized in ex-vivo developing neuronal networks due to advances in multi-electrode recording techniques and desktop computing. Applied to the study of ex-vivo networks of neurons, these approaches provide a unique view into learning and memory in networks, over a wide range of spatio-temporal scales. In this review, we summarize experimental data obtained from large random developing ex-vivo cortical networks. We describe how these networks are prepared, their structure, stages of functional development, and the forms of spontaneous activity they exhibit (Sections 2–4). In Section 5 we describe studies that seek to characterize the rules of activity-dependent changes in neural ensembles and their relation to monosynaptic rules. In Section 6, we demonstrate that it is possible to embed functionality into ex-vivo networks, that is, to teach them to perform desired firing patterns in both time and space. This requires ‘closing a loop’ between the network and the environment. Section 7 emphasizes the potential of ex-vivo developing cortical networks in the study of neural learning and memory universals. This may be achieved by combining closed loop experiments and ensemble-defined rules of activity-dependent change.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Bocchio ◽  
Claire Gouny ◽  
David Angulo-Garcia ◽  
Tom Toulat ◽  
Thomas Tressard ◽  
...  

Abstract The temporal embryonic origins of cortical GABA neurons are critical for their specialization. In the neonatal hippocampus, GABA cells born the earliest (ebGABAs) operate as ‘hubs’ by orchestrating population synchrony. However, their adult fate remains largely unknown. To fill this gap, we have examined CA1 ebGABAs using a combination of electrophysiology, neurochemical analysis, optogenetic connectivity mapping as well as ex vivo and in vivo calcium imaging. We show that CA1 ebGABAs not only operate as hubs during development, but also maintain distinct morpho-physiological and connectivity profiles, including a bias for long-range targets and local excitatory inputs. In vivo, ebGABAs are activated during locomotion, correlate with CA1 cell assemblies and display high functional connectivity. Hence, ebGABAs are specified from birth to ensure unique functions throughout their lifetime. In the adult brain, this may take the form of a long-range hub role through the coordination of cell assemblies across distant regions.


2019 ◽  
Author(s):  
Xingjian Zhang ◽  
Julian P. Meeks

AbstractThe accessory olfactory bulb (AOB) is a critical circuit in the mouse accessory olfactory system (AOS), but AOB processing is poorly understood compared to the main olfactory bulb (MOB). We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study the chemosensory tuning of AOB external granule cells (EGCs), an interneuron population hypothesized to broadly integrate from mitral cells (MCs). We measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was far sparser than MC tuning. Simultaneous patch-clamp electrophysiology and Ca2+ imaging indicated that this was only partially explained by lower GCaMP6f-to-spiking ratios in EGCs compared to MCs. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was broad, but monomolecular ligand responses were insufficient to elicit spiking. These results indicate that EGC spiking is selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.


BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Juan Garré ◽  
Guang Yang ◽  
Feliksas Bukauskas ◽  
Michael Bennett

2020 ◽  
Vol 225 (8) ◽  
pp. 2533-2551 ◽  
Author(s):  
Henrietta Howells ◽  
Luciano Simone ◽  
Elena Borra ◽  
Luca Fornia ◽  
Gabriella Cerri ◽  
...  

Abstract Cortico-cortical networks involved in motor control have been well defined in the macaque using a range of invasive techniques. The advent of neuroimaging has enabled non-invasive study of these large-scale functionally specialized networks in the human brain; however, assessing its accuracy in reproducing genuine anatomy is more challenging. We set out to assess the similarities and differences between connections of macaque motor control networks defined using axonal tracing and those reproduced using structural and functional connectivity techniques. We processed a cohort of macaques scanned in vivo that were made available by the open access PRIME-DE resource, to evaluate connectivity using diffusion imaging tractography and resting state functional connectivity (rs-FC). Sectors of the lateral grasping and exploratory oculomotor networks were defined anatomically on structural images, and connections were reproduced using different structural and functional approaches (probabilistic and deterministic whole-brain and seed-based tractography; group template and native space functional connectivity analysis). The results showed that parieto-frontal connections were best reproduced using both structural and functional connectivity techniques. Tractography showed lower sensitivity but better specificity in reproducing connections identified by tracer data. Functional connectivity analysis performed in native space had higher sensitivity but lower specificity and was better at identifying connections between intrasulcal ROIs than group-level analysis. Connections of AIP were most consistently reproduced, although those connected with prefrontal sectors were not identified. We finally compared diffusion MR modelling with histology based on an injection in AIP and speculate on anatomical bases for the observed false negatives. Our results highlight the utility of precise ex vivo techniques to support the accuracy of neuroimaging in reproducing connections, which is relevant also for human studies.


1996 ◽  
Vol 25 ◽  
pp. S57
Author(s):  
Taku Amano ◽  
Kumatoshi Ishihara ◽  
Masashi Sasa

2017 ◽  
Vol 131 ◽  
pp. 150-155 ◽  
Author(s):  
Zoltán Borbély ◽  
Benedek Krisztián Csomó ◽  
Ágnes Kittel ◽  
Gábor Gerber ◽  
Gábor Varga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document