Microscopic Technique for Studying Biofilm Formation

Author(s):  
M. Senthilkumar ◽  
N. Amaresan ◽  
A. Sankaranarayanan
Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


Author(s):  
M. F. Miller ◽  
A. R. Rubenstein

Studies of rotavirus particles in humans, monkeys and various non-primates with acute gastroenteritis have involved detection of virus in fecal material by electron microscopy. The EM techniques most commonly employed have been the conventional negative staining (Fig. 1) and immune aggregation (Fig. 2) procedures. Both methods are somewhat insensitive and can most reliably be applied to samples containing large quantities of virus either naturaLly or as a result of concentration by ultracentrifugation. The formation of immune complexes by specific antibody in the immune aggregation procedures confirms the rotavirus diagnosis, but the number of particles per given microscope field is effectively reduced by the aggregation process. In the present communication, we describe use of an on-grid immunoelectron microscopic technique in which rotavirus particles are mounted onto microscope grids that were pre-coated with specific antibody. The technique is a modification of a method originalLy introduced by Derrick (1) for studies of plant viruses.


Author(s):  
O. Iungin ◽  
L. Maistrenko ◽  
P. Rebrykova ◽  
I. Duka

Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


2019 ◽  
Vol 9 (o3) ◽  
Author(s):  
¹Hind H. Muunim ◽  
Muna T Al-Mossawei ◽  
Mais Emad Ahmed

Biofilms formation by pathogens microbial Control considered important in medical research because it is the hazarded virulence factor leading to becoming difficult to treat because of its high resistance to antimicrobials. Glycopeptide antibiotic a (Vancomycin) and the commercial bacteriocin (Nisin A) were used to comparative with purification bacteriocin (MRSAcin) against MRSA biofilm. One hundred food samples were collected from Baghdad markets from July 2016 to September 2016, including (cheese, yogurt, raw milk, fried meat, grilled meat, and beef burger). All samples were cultures; S. aureus was confirmation by macroscopic culture and microscopic examination, in addition to biochemical tests. Methicillin resistance S. asureus (MRSA) were identification by antibiotic sensitivity test (AST), Vitek 2 system. The result shown the 60(60%) isolate were identified as S. aureus and 45(75%) gave positive result as MRSA isolate, M13 isolate was chosen as MRSA isolates highest biofilm formation for treatment with MRSAcin, Nisin A(bacteriocin) and Vancomycin (antibiotic) to compared the more antimicrobial have bacteriocidal effect. The sensitivity test uses to determine the effect of MRSAcin, Nisin A, and Vancomycin MIC on MRSA planktonic cell by (WDA). The new study shows the impacts of new kind Pure Bacteriocins (MRSAcin) from methicillin-resistant S. aureus (MRSA) highly effects then (Vancomycin and Nisin A) at different concentration. In a current study aimed to suggest new Bacteriocin is potent highly for the treatment of resistant bacteria biofilm infections in food preservatives


Sign in / Sign up

Export Citation Format

Share Document