In Vivo Administration of Therapeutic Antisense Oligonucleotides

Author(s):  
Luisa Statello ◽  
Mohamad Moustafa Ali ◽  
Chandrasekhar Kanduri
1983 ◽  
Vol 50 (03) ◽  
pp. 652-655 ◽  
Author(s):  
F Bauer ◽  
P Schulz ◽  
G Reber ◽  
C A Bouvier

SummaryThree mucopolysaccharides (MPS) used in the treatment of degenerative joint disease were compared to heparin to establish their relative potencies on 3 coagulation tests, the aPTT, the antifactor X a activity and the dilute thrombin time. One of the compounds, Arteparon®, was one fourth as potent as heparin on the aPTT, but had little or no influence on the 2 other tests. Further in vitro studies suggested that Arteparon® acted at a higher level than factor Xa generation in the intrinsic amplification system and that its effect was independent of antithrombin III. In vivo administration of Arteparon® confirmed its anticoagulant properties, which raises the question of the clinical use of this MPS.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Johanna Simon ◽  
Gabor Kuhn ◽  
Michael Fichter ◽  
Stephan Gehring ◽  
Katharina Landfester ◽  
...  

Understanding the behavior of nanoparticles upon contact with a physiological environment is of urgent need in order to improve their properties for a successful therapeutic application. Most commonly, the interaction of nanoparticles with plasma proteins are studied under in vitro conditions. However, this has been shown to not reflect the complex situation after in vivo administration. Therefore, here we focused on the investigation of magnetic nanoparticles with blood proteins under in vivo conditions. Importantly, we observed a radically different proteome in vivo in comparison to the in vitro situation underlining the significance of in vivo protein corona studies. Next to this, we found that the in vivo corona profile does not significantly change over time. To mimic the in vivo situation, we established an approach, which we termed “ex vivo” as it uses whole blood freshly prepared from an animal. Overall, we present a comprehensive analysis focusing on the interaction between nanoparticles and blood proteins under in vivo conditions and how to mimic this situation with our ex vivo approach. This knowledge is needed to characterize the true biological identity of nanoparticles.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucy J. Newbury ◽  
Jui-Hui Wang ◽  
Gene Hung ◽  
Bruce M. Hendry ◽  
Claire C. Sharpe

Abstract Chronic Kidney Disease is a growing problem across the world and can lead to end-stage kidney disease and cardiovascular disease. Fibrosis is the underlying mechanism that leads to organ dysfunction, but as yet we have no therapeutics that can influence this process. Ras monomeric GTPases are master regulators that direct many of the cytokines known to drive fibrosis to downstream effector cascades. We have previously shown that K-Ras is a key isoform that drives fibrosis in the kidney. Here we demonstrate that K-Ras expression and activation are increased in rodent models of CKD. By knocking down expression of K-Ras using antisense oligonucleotides in a mouse model of chronic folic acid nephropathy we can reduce fibrosis by 50% and prevent the loss of renal function over 3 months. In addition, we have demonstrated in vitro and in vivo that reduction of K-Ras expression is associated with a reduction in Jag1 expression; we hypothesise this is the mechanism by which targeting K-Ras has therapeutic benefit. In conclusion, targeting K-Ras expression with antisense oligonucleotides in a mouse model of CKD prevents fibrosis and protects against renal dysfunction.


Sign in / Sign up

Export Citation Format

Share Document