Inducing Long-Term HIV-1 Latency in the TKO-BLT Mouse Model

Author(s):  
Yunyun Di ◽  
Kerry J. Lavender
Keyword(s):  
2019 ◽  
Vol 11 (504) ◽  
pp. eaav5685 ◽  
Author(s):  
Kim Anthony-Gonda ◽  
Ariola Bardhi ◽  
Alex Ray ◽  
Nina Flerin ◽  
Mengyan Li ◽  
...  

Adoptive immunotherapy using chimeric antigen receptor–modified T cells (CAR-T) has made substantial contributions to the treatment of certain B cell malignancies. Such treatment modalities could potentially obviate the need for long-term antiretroviral drug therapy in HIV/AIDS. Here, we report the development of HIV-1–based lentiviral vectors that encode CARs targeting multiple highly conserved sites on the HIV-1 envelope glycoprotein using a two-molecule CAR architecture, termed duoCAR. We show that transduction with lentiviral vectors encoding multispecific anti-HIV duoCARs confer primary T cells with the capacity to potently reduce cellular HIV infection by up to 99% in vitro and >97% in vivo. T cells are the targets of HIV infection, but the transduced T cells are protected from genetically diverse HIV-1 strains. The CAR-T cells also potently eliminated PBMCs infected with broadly neutralizing antibody-resistant HIV strains, including VRC01/3BNC117-resistant HIV-1. Furthermore, multispecific anti-HIV duoCAR-T cells demonstrated long-term control of HIV infection in vivo and prevented the loss of CD4+T cells during HIV infection using a humanized NSG mouse model of intrasplenic HIV infection. These data suggest that multispecific anti-HIV duoCAR-T cells could be an effective approach for the treatment of patients with HIV-1 infection.


2020 ◽  
Vol 8 (2) ◽  
pp. e001513
Author(s):  
Nahee Park ◽  
Kamal Pandey ◽  
Sei Kyung Chang ◽  
Ah-Young Kwon ◽  
Young Bin Cho ◽  
...  

BackgroundWell-characterized preclinical models are essential for immune-oncology research. We investigated the feasibility of our humanized mouse model for evaluating the long-term efficacy of immunotherapy and biomarkers.MethodsHumanized mice were generated by injecting human fetal cord blood-derived CD34+ hematopoietic stem cells to NOD-scid IL2rγnull (NSG) mice myeloablated with irradiation or busulfan. The humanization success was defined as a 25% or higher ratio of human CD45+ cells to mice peripheral blood mononuclear cells.ResultsBusulfan was ultimately selected as the appropriate myeloablative method because it provided a higher success rate of humanization (approximately 80%) and longer survival time (45 weeks). We proved the development of functional T cells by demonstrating the anticancer effect of the programmed cell death-1 (PD-1) inhibitor in our humanized mice but not in non-humanized NSG mice. After confirming the long-lasting humanization state (45 weeks), we further investigated the response durability of the PD-1 inhibitor and biomarkers in our humanized mice. Early increase in serum tumor necrosis factor α levels, late increase in serum interleukin 6 levels and increase in tumor-infiltrating CD8+ T lymphocytes correlated more with a durable response over 60 days than with a non-durable response.ConclusionsOur CD34+ humanized mouse model is the first in vivo platform for testing the long-term efficacy of anticancer immunotherapies and biomarkers, given that none of the preclinical models has ever been evaluated for such a long duration.


AIDS ◽  
1994 ◽  
Vol 8 (Supplement 4) ◽  
pp. S31
Author(s):  
G. Arendt ◽  
H. Hefter ◽  
H. Roick ◽  
H. -J. v. Giesen ◽  
St. Maus
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayumi Imahashi ◽  
Hirotaka Ode ◽  
Ayumi Kobayashi ◽  
Michiko Nemoto ◽  
Masakazu Matsuda ◽  
...  

AbstractIn HIV-1-infected patients, antiretroviral therapy (ART) is a key factor that may impact commensal microbiota and cause the emergence of side effects. However, it is not fully understood how long-term ART regimens have diverse impacts on the microbial compositions over time. Here, we performed 16S ribosomal RNA gene sequencing of the fecal and salivary microbiomes in patients under different long-term ART. We found that ART, especially conventional nucleotide/nucleoside reverse transcriptase inhibitor (NRTI)-based ART, has remarkable impacts on fecal microbial diversity: decreased α-diversity and increased ß-diversity over time. In contrast, dynamic diversity changes in the salivary microbiome were not observed. Comparative analysis of bacterial genus compositions showed a propensity for Prevotella-enriched and Bacteroides-poor gut microbiotas in patients with ART over time. In addition, we observed a gradual reduction in Bacteroides but drastic increases in Succinivibrio and/or Megasphaera under conventional ART. These results suggest that ART, especially NRTI-based ART, has more suppressive impacts on microbiota composition and diversity in the gut than in the mouth, which potentially causes intestinal dysbiosis in patients. Therefore, NRTI-sparing ART, especially integrase strand transfer inhibitor (INSTI)- and/or non-nucleotide reverse transcriptase inhibitor (NNRTI)-containing regimens, might alleviate the burden of intestinal dysbiosis in HIV-1-infected patients under long-term ART.


2020 ◽  
pp. 1-16
Author(s):  
Margaret Ryan ◽  
Valerie T.Y. Tan ◽  
Nasya Thompson ◽  
Diane Guévremont ◽  
Bruce G. Mockett ◽  
...  

Background: Secreted amyloid precursor protein-alpha (sAPPα) can enhance memory and is neurotrophic and neuroprotective across a range of disease-associated insults, including amyloid-β toxicity. In a significant step toward validating sAPPα as a therapeutic for Alzheimer’s disease (AD), we demonstrated that long-term overexpression of human sAPPα (for 8 months) in a mouse model of amyloidosis (APP/PS1) could prevent the behavioral and electrophysiological deficits that develop in these mice. Objective: To explore the underlying molecular mechanisms responsible for the significant physiological and behavioral improvements observed in sAPPα-treated APP/PS1 mice. Methods: We assessed the long-term effects on the hippocampal transcriptome following continuous lentiviral delivery of sAPPα or empty-vector to male APP/PS1 mice and wild-type controls using Affymetrix Mouse Transcriptome Assays. Data analysis was carried out within the Affymetrix Transcriptome Analysis Console and an integrated analysis of the resulting transcriptomic data was performed with Ingenuity Pathway analysis (IPA). Results: Mouse transcriptome assays revealed expected AD-associated gene expression changes in empty-vector APP/PS1 mice, providing validation of the assays used for the analysis. By contrast, there were specific sAPPα-associated gene expression profiles which included increases in key neuroprotective genes such as Decorin, betaine-GABA transporter, and protocadherin beta-5, subsequently validated by qRT-PCR. An integrated biological pathways analysis highlighted regulation of GABA receptor signaling, cell survival, and inflammatory responses. Furthermore, upstream gene regulatory analysis implicated sAPPα activation of Interleukin-4, which can counteract inflammatory changes in AD. Conclusion: This study identified key molecular processes that likely underpin the long-term neuroprotective and therapeutic effects of increasing sAPPα levels in vivo


2021 ◽  
Vol 22 (2) ◽  
pp. 912
Author(s):  
Nabila Seddiki ◽  
John Zaunders ◽  
Chan Phetsouphanh ◽  
Vedran Brezar ◽  
Yin Xu ◽  
...  

HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5–10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6–6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1–3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and β7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.


2012 ◽  
Vol 45 ◽  
pp. S89 ◽  
Author(s):  
Floor M. Lambers ◽  
Kathleen Koch ◽  
Gisela Kuhn ◽  
Claudia Weigt ◽  
Friederike A. Schulte ◽  
...  
Keyword(s):  

Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 936-941 ◽  
Author(s):  
Magdalena Magierowska ◽  
Ioannis Theodorou ◽  
Patrice Debré ◽  
Françoise Sanson ◽  
Brigitte Autran ◽  
...  

Abstract Human immunodeficiency virus (HIV)-1–infected long-term nonprogressors (LT-NP) represent less than 5% of HIV-1–infected patients. In this work, we tried to understand whether combined genotypes of CCR5-▵32, CCR2-64I, SDF1-3′A and HLA alleles can predict the LT-NP status. Among the chemokine receptor genotypes, only the frequency of the CCR5-▵32 allele was significantly higher in LT-NP compared with the group of standard progressors. The predominant HLA alleles in LT-NP were HLA-A3, HLA-B14, HLA-B17, HLA-B27, HLA-DR6, and HLA-DR7. A combination of both HLA and chemokine receptor genotypes integrated in a multivariate logistic regression model showed that if a subject is heterozygous for CCR5-▵32 and homozygous for SDF1 wild type, his odds of being LT-NP are increased by 16-fold, by 47-fold when a HLA-B27 allele is present with HLA-DR6 absent, and by 47-fold also if at least three of the following alleles are present: HLA-A3, HLA-B14, HLA-B17, HLA-DR7. This model allowed a correct classification of 70% of LT-NPs and 81% of progressors, suggesting that the host’s genetic background plays an important role in the evolution of HIV-1. The chemokine receptor and chemokine genes along with the HLA genotype can serve as predictors of HIV-1 outcome for classification of HIV-1–infected subjects as LT-NPs or progressors.


Sign in / Sign up

Export Citation Format

Share Document