Inactivation of S-adenosylhomocysteine hydrolase: Mechanism and occurrence in vivo in disorders of purine nucleoside catabolism

Author(s):  
Michael S Hershfield ◽  
W Curtis Small ◽  
Ramaswamy Premakumar ◽  
Aldo S Bagnara ◽  
Joan E Fetter
Gene Therapy ◽  
2000 ◽  
Vol 7 (20) ◽  
pp. 1738-1743 ◽  
Author(s):  
V K Gadi ◽  
S D Alexander ◽  
J E Kudlow ◽  
P Allan ◽  
W B Parker ◽  
...  

1975 ◽  
Vol 53 (3) ◽  
pp. 312-319 ◽  
Author(s):  
R. D. Walker ◽  
J. A. Duerre

Eleven microorganisms, four plants, and major organs from the chicken, dog, rat, and rabbit were assayed for the presence of S-adenosylhomocysteine hydrolase, S-adenosyl-homocysteine nucleosidase, and S-ribosylhomocysteine-cleavage enzyme. All bacteria (procaryotes) were found to possess S-adenosylhomocysteine nucleosidase and S-ribosylhomocysteine-cleavage enzyme but not S-adenosylhomocysteine hydrolase. All eucaryotes tested, including yeasts, plants, birds, and mammals, possessed S-adenosylhomocysteine hydrolase but not S-adenosylhomocysteine nucleosidase or S-ribosylhomocysteine-cleavage enzyme. Of all the organs assayed in the vertebrates, the level of S-adenosylhomocysteine hydrolase was highest in liver, pancreas, and kidney, lower in spleen and testis, and very low in brain and heart. In all systems tested, equilibrium of the hydrolase reaction always favored synthesis over hydrolysis. We studied some of the kinetic properties of the hydrolase from rat liver. In the direction of synthesis, the Km value was 1.5 mM for adenosine and 4.5 mM for L-homocysteine, whereas marked substrate inhibition was observed with L-homocysteine. The condensation reaction is subject to product inhibition, and was inhibited by adenine. Results from in-vivo experiments revealed that the cells of the various organs of the dog are impermeable to the exogenously administered S-adenosylhomocysteine.


Blood ◽  
1972 ◽  
Vol 39 (4) ◽  
pp. 522-524 ◽  
Author(s):  
Frank A. Oski ◽  
Harvey J. Sugerman ◽  
Leonard D. Miller

Abstract The relationship between red cell purine nucleoside phosphorylase activity and the ability of stored erythrocytes to regenerate the organic phosphate 2,3-diphosphoglycerate was evaluated in man, monkey, rabbit, dog, cat, and rat. A linear relationship was observed between the activity of this enzyme and the in vitro regeneration of 2,3-diphosphoglycerate from a solution of inosine, pyruvate, and inorganic phosphate. These studies suggest that rabbit and monkey erythrocytes respond in a manner similar to that of human erythrocytes and, therefore, might be useful experimental models for the evaluation of pharmacologic methods for the in vivo alteration of the oxygen-hemoglobin equilibrium curve.


2007 ◽  
Vol 75 (9) ◽  
pp. 4211-4218 ◽  
Author(s):  
Hanjuan Shao ◽  
Richard J. Lamont ◽  
Donald R. Demuth

ABSTRACT Autoinducer 2 (AI-2) is required for the growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans in culture under conditions of iron limitation. However, in vivo this organism thrives in a complex multispecies biofilm that forms in the human oral cavity. In this report, we show that adherent growth of A. actinomycetemcomitans on a saliva-coated surface, but not planktonic growth under iron-replete conditions, is defective in a LuxS-deficient background. Biofilm growth of the luxS mutant exhibited lower total biomass and lower biofilm depth than those for the wild-type strain. Normal biofilm growth of the luxS mutant was restored genetically by introduction of a functional copy of luxS and biochemically by addition of partially purified AI-2. Furthermore, introduction of S-adenosylhomocysteine hydrolase, which restores the metabolism of S-adenosylmethionine in the absence of LuxS, into A. actinomycetemcomitans did not complement the luxS mutation unless AI-2 was added in trans. This suggests that AI-2 itself is required for biofilm growth by A. actinomycetemcomitans. A biofilm growth deficiency similar to that of the LuxS-deficient strain was also observed when a gene encoding the AI-2-interacting protein RbsB or LsrB was inactivated. Biofilm formation by A. actinomycetemcomitans was virtually eliminated upon inactivation of both rbsB and lsrB. In addition, biofilm growth by wild-type A. actinomycetemcomitans was reduced in the presence of ribose, which competes with AI-2 for binding to RbsB. These results suggest that RbsB and LsrB function as AI-2 receptors in A. actinomycetemcomitans and that the development of A. actinomycetemcomitans biofilms requires AI-2.


Sign in / Sign up

Export Citation Format

Share Document