adenoviral delivery
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 19)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Patrick O’Connell ◽  
Maja K. Blake ◽  
Yuliya Pepelyayeva ◽  
Sean Hyslop ◽  
Sarah Godbehere ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jijun Sun ◽  
Ruiling Liu ◽  
Xiaozhen He ◽  
Jiang Bian ◽  
Wenbo Zhao ◽  
...  

Regulatory T cells (Tregs) are considered important for controlling the onset and development of autoimmune disease. Although studies have shown that miR-21 is expressed at higher levels in Treg cells, it remains largely elusive whether miR-21 regulates the immune-suppressive function of Tregs. In the current study, we generated mice lacking miR-21 specifically in their Tregs and investigated the role of miR-21 in regulating Treg function both in vitro and in vivo. Our study revealed that Tregs lacking miR-21 exhibit normal phenotype and unaltered function in suppressing T cell proliferation and dendritic cell activation in vitro. However, compared with miR-21-sufficient Tregs, they produce significant more IL-17 and IL-10 when under pathogenic Th17-priming condition. Adenoviral delivery of miR-21 into Treg cells is able to reduce the expression of both IL-17 and IL-10. Mechanistic study revealed that miR-21 down-regulates IL-10 expression through direct targeting of IL-10, and suppresses reprogramming of Tregs into IL-17-secreting cells through down-regulating Stat3 activity. However, we detected no significant or marginal difference in the development of various autoimmune diseases between wild type mice and mice with Treg-specific deletion of miR-21. In conclusion, our study demonstrated that miR-21 in Tregs regulates diametrically opposed biological Treg functions and is largely dispensable for the development of autoimmune disease.


Oncogene ◽  
2021 ◽  
Author(s):  
Shiran Shapira ◽  
Ilana Boustanai ◽  
Dina Kazanov ◽  
Marina Ben Shimon ◽  
Ahmad Fokra ◽  
...  

AbstractThe inactivation of p53, a tumor suppressor, and the activation of the RAS oncogene are the most frequent genetic alterations in cancer. We have shown that a unique E. coli MazF-MazE toxin–antitoxin (TA) system can be used for selective and effective eradication of RAS-mutated cancer cells. This out of the box strategy holds great promise for effective cancer treatment and management. We provide proof of concept for a novel platform to selectively eradicate cancer cells using an adenoviral delivery system based on the adjusted natural bacterial system. We generated adenoviral vectors carrying the mazF toxin (pAdEasy-Py4-SV40mP-mCherry-MazF) and the antitoxin mazE (pAdEasy-RGC-SV40mP-MazE-IRES-GFP) under the regulation of RAS and p53, resp. The control vector carries the toxin without the RAS-responsive element (pAdEasy-ΔPy4-SV40mP-mCherry-MazF). In vitro, the mazF-mazE TA system (Py4-SV40mP-mCherry-MazF+RGC-SV40mP-MazE-IRES-GFP) induced massive, dose-dependent cell death, at 69% compared to 19% for the control vector, in a co-infected HCT116 cell line. In vivo, the system caused significant tumor growth inhibition of HCT116 (KRASmut/p53mut) tumors at 73 and 65% compared to PBS and ΔPY4 control groups, resp. In addition, we demonstrate 65% tumor growth inhibition in HCT116 (KRASmut/p53wt) cells, compared to the other two control groups, indicating a contribution of the antitoxin in blocking system leakage in WT RAS cells. These data provide evidence of the feasibility of using mutations in the p53 and RAS pathway to efficiently kill cancer cells. The platform, through its combination of the antitoxin (mazE) with the toxin (mazF), provides effective protection of normal cells from basal low activity or leakage of mazF.


JBMR Plus ◽  
2021 ◽  
Author(s):  
Christopher R. Paradise ◽  
Rodolfo E. De La Vega ◽  
M. Lizeth Galvan ◽  
Margarita E. Carrasco ◽  
Roman Thaler ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mustafa M. Tashkandi ◽  
Saqer F. Alsaqer ◽  
Thabet Alhousami ◽  
Faiza Ali ◽  
Yu-Chiao Wu ◽  
...  

AbstractIn the United States, 5–12% of adults have at least one symptom of temporomandibular joint (TMJ) disorders, including TMJ osteoarthritis (TMJ-OA). However, there is no chondroprotective agent that is approved for clinical application. We showed that LOXL2 is elevated in the regenerative response during fracture healing in mice and has a critical role in chondrogenic differentiation. Indeed, LOXL2 is an anabolic effector that attenuates pro-inflammatory signaling in OA cartilage of the TMJ and knee joint, induces chondroprotective and regenerative responses, and attenuates NF-kB signaling. The specific goal of the study was to evaluate if adenoviral delivery of LOXL2 is anabolic to human and mouse TMJ condylar cartilage in vivo and evaluate the protective and anabolic effect on cartilage-specific factors. We employed two different models to assess TMJ-OA. In one model, clinical TMJ-OA cartilage from 5 different samples in TMJ-OA cartilage plugs were implanted subcutaneously in nude mice. Adenovirus LOXL2 -treated implants showed higher mRNA levels of LOXL2, ACAN, and other anabolic genes compared to the adenovirus-Empty-treated implants. Further characterization by RNA-seq analysis showed LOXL2 promotes proteoglycan networks and extracellular matrix in human TMJ-OA cartilage implants in vivo. In order to evaluate if LOXL2-induced functional and sex-linked differences, both male and female four-month-old chondrodysplasia (Cho/+) mice, which develop progressive TMJ-OA due to a point mutation in the Col11a1 gene, were subjected to intraperitoneal injection with Adv-RFP-LOXL2 every 2 weeks for 12 weeks. The data showed that adenovirus delivery of LOXL2 upregulated LOXL2 and aggrecan (Acan), whereas MMP13 expression was slightly downregulated. The fold change expression of Acan and Runx2 induced by Adv-RFP-LOXL2 was higher in females compared to males. Interestingly, Adv-RFP-LOXL2 injection significantly increased Rankl expression in male but there was no change in females, whereas VegfB gene expression was increased in females, but not in males, as compared to those injected with Adv-RFP-Empty in respective groups. Our findings indicate that LOXL2 can induce specifically the expression of Acan and other anabolic genes in two preclinical models in vivo. Further, LOXL2 has beneficial functions in human TMJ-OA cartilage implants and promotes gender-specific anabolic responses in Cho/+ mice with progressive TMJ-OA, suggesting its merit for further study as an anabolic therapy for TMJ-OA.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1934 ◽  
Author(s):  
Eric Ehrke-Schulz ◽  
Sonja Heinemann ◽  
Lukas Schulte ◽  
Maren Schiwon ◽  
Anja Ehrhardt

Human papillomaviruses (HPV) cause malignant epithelial cancers including cervical carcinoma, non-melanoma skin and head and neck cancer. They drive tumor development through the expression of their oncoproteins E6 and E7. Designer nucleases were shown to be efficient to specifically destroy HPV16 and HPV18 oncogenes to induce cell cycle arrest and apoptosis. Here, we used high-capacity adenoviral vectors (HCAdVs) expressing the complete CRISPR/Cas9 machinery specific for HPV18-E6 or HPV16-E6. Cervical cancer cell lines SiHa and CaSki containing HPV16 and HeLa cells containing HPV18 genomes integrated into the cellular genome, as well as HPV-negative cancer cells were transduced with HPV-type-specific CRISPR-HCAdV. Upon adenoviral delivery, the expression of HPV-type-specific CRISPR/Cas9 resulted in decreased cell viability of HPV-positive cervical cancer cell lines, whereas HPV-negative cells were unaffected. Transduced cervical cancer cells showed increased apoptosis induction and decreased proliferation compared to untreated or HPV negative control cells. This suggests that HCAdV can serve as HPV-specific cancer gene therapeutic agents when armed with HPV-type-specific CRISPR/Cas9. Based on the versatility of the CRISPR/Cas9 system, we anticipate that our approach can contribute to personalized treatment options specific for the respective HPV type present in each individual tumor.


2020 ◽  
Vol 15 (7) ◽  
pp. 1877-1890
Author(s):  
Jyoti Shrestha Takanche ◽  
Ji-Eun Kim ◽  
Jeong-Seok Kim ◽  
Ho-Keun Yi

Aim: Bone healing becomes problematic during certain states, such as trauma. This study verifies whether the application of c-myb with gelatin promotes bone healing during bone injuries. Materials & methods: A biodegradable membrane was modified with adenoviral vector c-myb ( Ad/c-myb) and gelatin and applied in the bone injury site of rat tibia. Results: c-myb enhanced osteogenic differentiation and mineralization in bone marrow stromal cells after induction with osteogenic media. In vivo examination of rat tibia after application of the biodegradable membrane with Ad/c-myb and a gelatin layer demonstrated increased bone volume, bone mineral density, new bone formation and osteogenic molecules, compared with Ad/LacZ. Conclusion: c-myb has the potential to assist bone healing and may be applicable to the treatment of bone during injury.


2020 ◽  
Vol 21 (9) ◽  
pp. 3368
Author(s):  
Chad M. Paton ◽  
Yura Son ◽  
Roger A. Vaughan ◽  
Jamie A. Cooper

Gut-derived satiety hormones provide negative feedback to suppress food intake and maintain metabolic function in peripheral tissues. Despite the wealth of knowledge of the systemic effects of these hormones, very little is known concerning the mechanisms by which nutrients, such as dietary fats, can promote the expression of genes involved in L-cell hormone production. We have tested the role of various dietary fats and found that after hydrolysis into free fatty acids (FFA’s), there is a differential response in the extent to which they induce PYY gene and protein production. The effect of FFA’s also seems to relate to triglyceride (TG) re-esterification rate, with MUFA re-esterifying faster with lower PYY production. We have also found that there are differences in potency of FFA’s based on their desaturation patterns in vitro. The potency effect of FFA’s is influenced by the rate of TG re-esterification, such that the longer FFA’s are in contact with L-cells, the more PYY they produce. We found that chronic consumption of high-fat diets enables the small intestine to re-esterify FFA’s into TG faster and earlier which resulted in a blunted postprandial PYY response. Lastly, we found that FFA’s induce X-box-binding protein-1 activation (Xbp1s) in L-cells and that adenoviral delivery of Xbp1s was sufficient to induce PYY gene expression. Taken together, the present work indicates that dietary fat can induce satiety, in part, prior to re-esterification. Chronic high-fat diet consumption increases the rate of re-esterification which diminishes satiety and may lead to increased food intake. Targeting intestinal TG synthesis may prove beneficial in restoring obesity-associated reductions in postprandial satiety.


Sign in / Sign up

Export Citation Format

Share Document