The Steady, One-dimensional Flow of an Ideal Incompressible Fluid

1988 ◽  
pp. 31-40
Author(s):  
G. Boxer
2005 ◽  
Vol 83 (7) ◽  
pp. 761-766
Author(s):  
Alexei M Frolov

The variational optimal shape of slowly rising gas bubbles in an ideal incompressible fluid is determined. It is shown that the original three-dimensional problem can be reduced to a relatively simple one-dimensional (i.e., ordinary) differential equation. The solution of this equation allows one to obtain the variational optimal form of slowly rising gas bubbles. PACS No.: 47.55.Dz


2020 ◽  
Vol 30 (1) ◽  
pp. 130-137
Author(s):  
Hengxiao Yang ◽  
Qimian Mo ◽  
Hengyu Lu ◽  
Shixun Zhang ◽  
Wei Cao ◽  
...  

AbstractTo describe uncured rubber melt flow, a modified Phan–Thien–Tanner (PTT) model was proposed to characterize the rheological behavior and a viscoelastic one-dimensional flow theory was established in terms of incompressible fluid. The corresponding numerical method was constructed to determine the solution. Rotational rheological experiments were conducted to validate the proposed model. The influence of the parameters in the constitutive model was investigated by comparing the calculated and experimental viscosity to determine the most suitable parameters. The uncured rubber viscosity was 3–4 orders larger than that of plastic and did not have a visible Newtonian region. Compared with the Cross-Williams-Landel-Ferry (Cross-WLF) and original PTT models, the modified PTT model can describe the rheological characteristics in the entire shear-rate region if the parameters are set correctly.


1975 ◽  
Vol 189 (1) ◽  
pp. 557-565 ◽  
Author(s):  
A. Whitfield ◽  
F. J. Wallace

A procedure to predict the complete performance map of turbocharger centrifugal compressors is presented. This is based on a one-dimensional flow analysis using existing published loss correlations that were available and thermodynamic models to describe the incidence loss and slip factor variation at flow rates which differ from the design point. To predict the losses within the complete compressor stage using a one-dimensional flow procedure, it is necessary to introduce a number of empirical parameters. The uncertainty associated with these empirical parameters is assessed by studying the effect of varying them upon the individual losses and upon the overall predicted performance.


1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.


Author(s):  
T. Gary Yip

Abstract Supersonic combustion induced by a two-shock system has been studied using a chemical nonequilibrium, quasi one-dimensional flow model. The combustion of stoichiometric, premixed H2-air is described by a chemistry model which consists of 11 species and 28 reactions. The freestream Mach numbers used in this calculations are 8, 10 and 12. The initial pressure is 0.01 atm and temperature 300 K. The first of the two shocks is a conical shock and the second is its reflection. Supersonic combustion has been predicted to occur at combustor pressures between 0.8 and 2.9 atmospheres, and temperatures between 1500 and 3000 K. The Mach number of the flow in the combustor is between 1.7 and 4. These combustor conditions are typical of the future hypersonic propulsion systems. The results also show the changes in the composition of the flow during the induction and heat release phases. The two-shock system is assumed to be generated by a cone. For Mach 8, 10 and 12, the minimum cone angle for generating a strong enough two-shock system to induce supersonic combustion has also been identified.


1990 ◽  
Vol 32 (7) ◽  
pp. 581-590 ◽  
Author(s):  
M.S. Saidi ◽  
H. Daneshyar

Sign in / Sign up

Export Citation Format

Share Document