History of anthropogenically mediated eutrophication of Lake Peipsi as revealed by the stratigraphy of fossil pigments and molecular size fractions of pore-water dissolved organic matter

Author(s):  
Aina Leeben ◽  
Ilmar Toñnno ◽  
Rene Freiberg ◽  
Viia Lepane ◽  
Nicolas Bonningues ◽  
...  
2010 ◽  
Vol 26 (sup2) ◽  
pp. 13-24 ◽  
Author(s):  
Natalja Makarõtševa ◽  
Viia Lepane ◽  
Tiiu Alliksaar ◽  
Atko Heinsalu

Limnology ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 29-44 ◽  
Author(s):  
Takahito Yoshioka ◽  
Khan M. G. Mostofa ◽  
Eiichi Konohira ◽  
Eiichiro Tanoue ◽  
Kazuhide Hayakawa ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Meilian Chen ◽  
Ji-Hoon Kim ◽  
Sungwook Hong ◽  
Yun Kyung Lee ◽  
Moo Hee Kang ◽  
...  

Fjords in the high Arctic, as aquatic critical zones at the interface of land-ocean continuum, are undergoing rapid changes due to glacier retreat and climate warming. Yet, little is known about the biogeochemical processes in the Arctic fjords. We measured the nutrients and the optical properties of dissolved organic matter (DOM) in both seawater and sediment pore water, along with the remote sensing data of the ocean surface, from three West Svalbard fjords. A cross-fjord comparison of fluorescence fingerprints together with downcore trends of salinity, Cl−, and PO43− revealed higher impact of terrestrial inputs (fluorescence index: ~1.2–1.5 in seawaters) and glaciofluvial runoffs (salinity: ~31.4 ± 2.4 psu in pore waters) to the southern fjord of Hornsund as compared to the northern fjords of Isfjorden and Van Mijenfjorden, tallying with heavier annual runoff to the southern fjord of Hornsund. Extremely high levels of protein-like fluorescence (up to ~4.5 RU) were observed at the partially sea ice-covered fjords in summer, in line with near-ubiquity ice-edge blooms observed in the Arctic. The results reflect an ongoing or post-phytoplankton bloom, which is also supported by the higher levels of chlorophyll a fluorescence at the ocean surface, the very high apparent oxygen utilization through the water column, and the nutrient drawdown at the ocean surface. Meanwhile, a characteristic elongated fluorescence fingerprint was observed in the fjords, presumably produced by ice-edge blooms in the Arctic ecosystems. Furthermore, alkalinity and the humic-like peaks showed a general downcore accumulation trend, which implies the production of humic-like DOM via a biological pathway also in the glaciomarine sediments from the Arctic fjords.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Svetlana Patsaeva ◽  
Daria Khundzhua ◽  
Oleg A. Trubetskoj ◽  
Olga E. Trubetskaya

Advanced fluorescence analysis within the wide range of excitation wavelengths from 230 to 510 nm accompanied with chromatography was used to study natural chromophoric dissolved organic matter (CDOM) from three freshwater Karelian lakes. The influence of excitation wavelength (λex) on fluorescence quantum yield and emission maximum position was determined. The CDOM fluorescence quantum yield has reached a minimum at λex∼270–280 nm and a maximum at λex∼340–360 nm. It was monotonously decreasing after 370 nm towards longer excitation wavelengths. Analytical reversed-phase high-performance liquid chromatography with multiwavelength fluorescence detector characterized distribution of fluorophores between hydrophilic/hydrophobic CDOM parts. This technique revealed “hidden” protein-like fluorophores for some CDOM fractions, in spite of the absence of protein-like fluorescence in the initial CDOM samples. The humic-like fluorescence was documented for all hydrophilic and hydrophobic CDOM chromatographic peaks, and its intensity was decreasing along with peaks’ hydrophobicity. On contrary, the protein-like fluorescence was found only in the hydrophobic peaks, and its intensity was increasing along with peaks’ hydrophobicity. This work provides new data on the CDOM optical properties consistent with the formation of supramolecular assemblies controlled by association of low-molecular size components. In addition, these data are very useful for understanding the CDOM function in the environment.


Sign in / Sign up

Export Citation Format

Share Document