Sustainable Design Engineering: Design as a Key Driver in Sustainable Product and Business Development

Author(s):  
Christoph Herrmann ◽  
Guenter Moeller
2021 ◽  
Author(s):  
Filippo A. Salustri

Product design engineering is undergoing a transformation from informal and largely experience-based discipline to a science-based domain. Computational intelligence offers models and algorithms that can contribute greatly to design formalization and automation. This paper surveys computational intelligence concepts and approaches applicable to product design engineering. Taxonomy of the surveyed literature is presented according to the generally recognized areas in both product design engineering and computational intelligence. Some research issues that arise from the broad perspective presented in the paper have been signaled but not fully pursued. No survey of such a broad field can be complete, however, the material presented in the paper is a summary of state-of-the-art computational intelligence concepts and approaches in product design engineering. Keywords: Computational intelligence, engineering design, product engineering, decision making, design automation


Author(s):  
W Ernst Eder

Students learning design engineering at times need a good example of procedure for novel design engineering. The systematic heuristic-strategic use of a theory to guide the design process – Engineering Design Science – and the methodical design process followed in this case study is only necessary in limited situations. The full procedure should be learned, such that the student can select appropriate parts for other applications. Creativity is usually characterized by a wide search for solutions, especially those that are innovative. The search can be helped by this systematic and methodical approach. This case example is presented to show application of the recommended method, and the expected scope of the output, with emphasis on the stages of conceptualizing. The case follows a novel design problem of a mechanism to open and close the bow thruster covers for the Caravan Stage Barge.


Author(s):  
Marc A. Rosen ◽  
David A. G. Meston

Health and safety issues are important in engineering, management and other fields, and particularly in engineering design. Engineering-oriented health and safety relevant to design is discussed and appropriate case studies are provided which help convey the importance of these issues concisely. The article is directed and structured for engineering, but also discusses ties outside engineering. The case studies presented here are fictitious, although they contain ideas based on actual incidents. Although the case studies are oriented towards engineering, they also incorporate management and business issues, since health and safety must be dealt with in an integrated and interdisciplinary manner.


2020 ◽  
Vol 1 ◽  
pp. 1825-1834
Author(s):  
A. F. Valderrama Pineda ◽  
M. Niero

AbstractSustainable Design Engineering (SDE) is an emerging research field and the development of programmes aiming at educating sustainable design engineers is very limited. One example is the SDE program at the Aalborg University in Copenhagen, which is based on a Problem Based Learning (PBL) model. In this article we aim to address the following three research questions: i) why Sustainable Design Engineering? ii) what is Sustainable Design Engineering? iii) How can Sustainable Design Engineering be implemented? By means of two examples from master thesis projects in the building and food sectors.


Author(s):  
W. Ernst Eder

The engineering design methodology of Pahl and Beitz is good in the detailed stages, but needs enhancement in the early stages of conceptualizing and embodiment-in-principle. The concept of ‘functions’ has been enhanced by Hubka and colleagues. A ‘functional basis’ (Hirtz et al) has improved the definitions of ‘flows’ and ‘functions’, their work does not go far enough to provide a basis for conceptualizing. ‘Affordances’ (Maier and Fadel) are covered by full use of systematic conceptualizing of design engineering solutions. The Pahl-Beitz model and method of ‘decomposition of functions’, ‘physics’, and components is contrasted with the Hubka models of a transformation system, TrfS, its constituents, structures, properties life cycle, etc., and their use as method for design engineering by searching for alternative embodiments at each of these levels of abstraction. These steps are illustrated in (to date) 21 case examples published between 1976 and 2012, several of them in the CEEA conferences and their predecessors.


Author(s):  
W. Ernst Eder

‘Design’ can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be co-ordinated for internal consistency and plausibility. Design Research tries to clarify design processes and their underlying theories – designing in general, and particular forms, e.g. design engineering. Theories are a basis for deriving theory- based design methods. Design engineering and artistic forms of designing, industrial design, have much in common, but also differences. For an attractive and user-friendly product, its form (observable shape) is important – a task for industrial designers, architects, etc. ‘Conceptualizing’ consists of preliminary sketches, a direct entry to hardware – industrial designers work ‘outside inwards’. For a product that should work and fulfill a purpose, perform a transformation process, its functioning and operation are important – a task for engineering designers. Anticipating and analyzing a capability for operation is a role of the engineering sciences. The outcome of design engineering is a set of manufacturing instructions, and analytical verification of anticipated performance. Design engineering is more constrained than industrial design, but in contrast has available a theory of technical systems and its associated engineering design science, with several abstract models and representations of structures. Engineering designers tend to be primary for technical systems, and their operational and manufacturing processes – they work ‘inside outwards’. Hubka’s theory, and consequently design metho- dology, includes consideration of tasks of a technical system, typical life cycle, duty cycle, classes of properties (and requirements), mode of action, development in time, and other items of interest for engineering design processes. Hubka’s methodology is demonstrated by several case examples.


Author(s):  
Vicky Lofthouse

This paper proposes that there is a need to prepare undergraduate design students to be responsible practitioners when they enter the workplace. The multi-faceted approach adopted by the Design School at Loughborough University to achieve this is presented. The paper outlines and reflects on the differences between the idealistic environment provided within an educational setting and the actual situation in the design industry, where there is little evidence of mainstream sustainable design practice. The paper concludes that it is valuable to provide students with a range of skills that support sustainable design thinking, even if they are not currently required by the design industry because doing so turns the students into informed individuals with the potential to lead the next generation of design practitioners.


2021 ◽  
Author(s):  
Filippo A. Salustri

Product design engineering is undergoing a transformation from informal and largely experience-based discipline to a science-based domain. Computational intelligence offers models and algorithms that can contribute greatly to design formalization and automation. This paper surveys computational intelligence concepts and approaches applicable to product design engineering. Taxonomy of the surveyed literature is presented according to the generally recognized areas in both product design engineering and computational intelligence. Some research issues that arise from the broad perspective presented in the paper have been signaled but not fully pursued. No survey of such a broad field can be complete, however, the material presented in the paper is a summary of state-of-the-art computational intelligence concepts and approaches in product design engineering. Keywords: Computational intelligence, engineering design, product engineering, decision making, design automation


Sign in / Sign up

Export Citation Format

Share Document