Pectinolytic Enzymes

Author(s):  
Nicemol Jacob
Keyword(s):  
2021 ◽  
Vol 28 ◽  
Author(s):  
Ersin Karataş ◽  
Ahmet Tülek ◽  
Mehmet Mervan Çakar ◽  
Faruk Tamtürk ◽  
Fatih Aktaş ◽  
...  

Background: Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. Objectives: The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. Methods: Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. Results: The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. Conclusion: The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.


Author(s):  
Amanjot Kaur ◽  
Libin Mathew Varghese ◽  
Bindu Battan ◽  
Arun Kumar Patra ◽  
Rishi Pal Mandhan ◽  
...  

1995 ◽  
Vol 20 (5) ◽  
pp. 312-316 ◽  
Author(s):  
J. Kopečný ◽  
Blanka Hodrová

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10343
Author(s):  
Pattsarun Cheawchanlertfa ◽  
Sawannee Sutheeworapong ◽  
Piroon Jenjaroenpun ◽  
Thidathip Wongsurawat ◽  
Intawat Nookaew ◽  
...  

Background Cassava pulp is a promising starch-based biomasses, which consists of residual starch granules entrapped in plant cell wall containing non-starch polysaccharides, cellulose and hemicellulose. Strain CT4T, a novel mesophilic anaerobic bacterium isolated from soil collected from a cassava pulp landfill, has a strong ability to degrade polysaccharides in cassava pulp. This study explored a rarely described species within the genus Clostridium that possessed a group of cassava pulp-degrading enzymes. Methods A novel mesophilic anaerobic bacterium, the strain CT4T, was identified based on phylogenetic, genomic, phenotypic and chemotaxonomic analysis. The complete genome of the strain CT4T was obtained following whole-genome sequencing, assembly and annotation using both Illumina and Oxford Nanopore Technology (ONT) platforms. Results Analysis based on the 16S rRNA gene sequence indicated that strain CT4T is a species of genus Clostridium. Analysis of the whole-genome average amino acid identity (AAI) of strain CT4T and the other 665 closely related species of the genus Clostridium revealed a separated strain CT4T from the others. The results revealed that the genome consisted of a 6.3 Mb circular chromosome with 5,664 protein-coding sequences. Genome analysis result of strain CT4T revealed that it contained a set of genes encoding amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. A comparative genomic analysis of strain CT4T with closely related species with available genomic information, C. amylolyticum SW408T, showed that strain CT4T contained more genes encoding cassava pulp-degrading enzymes, which comprised a complex mixture of amylolytic-, hemicellulolytic-, cellulolytic- and pectinolytic enzymes. This work presents the potential for saccharification of strain CT4T in the utilization of cassava pulp. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, we propose a novel species for which the name Clostridium manihotivorum sp. nov. is suggested, with the type strain CT4T (= TBRC 11758T = NBRC 114534T).


1992 ◽  
Vol 14 (6) ◽  
pp. 275-278
Author(s):  
D. Peričin ◽  
M. Jarak ◽  
M. Antov ◽  
B. Vujičič ◽  
S. Kevrešan

2005 ◽  
Vol 18 (11) ◽  
pp. 1205-1214 ◽  
Author(s):  
William Nasser ◽  
Sylvie Reverchon ◽  
Regine Vedel ◽  
Martine Boccara

Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of ectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.


1969 ◽  
Vol 65 (3) ◽  
pp. 263-267 ◽  
Author(s):  
V. N. Pathak ◽  
D. N. Srivastava
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document