PIV Techniques in Experimental Measurement of Two Phase (Gas-Liquid) Systems

2010 ◽  
pp. 111-129
Author(s):  
Basheer Ashraf Ali ◽  
Subramaniam Pushpavanam
1992 ◽  
Vol 57 (7) ◽  
pp. 1419-1423
Author(s):  
Jindřich Weiss

New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.


Author(s):  
Rufat Abiev

Analysis of hydrodynamics and mass transfer Taylor flows in micro channels of both gas-liquid and liquid-liquid systems on the basis of classical theoretical approach with some simplifying assumptions was performed. Results of theoretical analysis for description of hydrodynamic parameters and mass transfer characteristics were confirmed by comparison with the author's own and available in literature experimental data. It was shown that the main parameters of two-phase Taylor flows could be quite precisely described theoretically: mean bubble/droplet velocity, liquid film thickness, real gas holdup (which is always smaller than so-called dynamic holdup), pressure drop. Peculiarities of liquid-liquid flows compared to gas-liquid Taylor flows in capillaries are discussed. Wettability effect on hydrodynamics was examined. Tools of mass transfer intensification of gas-liquid and liquid-liquid Taylor flow in micro channels are analyzed. Three-layer model for heat and mass transfer has been proposed and implemented for the case of solid-liquid mass transfer for gas-liquid Taylor flows; optimal process conditions for this process are found theoretically and discussed from physical point of view.


AIChE Journal ◽  
1966 ◽  
Vol 12 (4) ◽  
pp. 795-801 ◽  
Author(s):  
Irwin Pliskin ◽  
Robert E. Treybal

2019 ◽  
Vol 309 ◽  
pp. 219-227 ◽  
Author(s):  
A.N. Colli ◽  
J.P. Fornés ◽  
O. González Pérez ◽  
J.M. Bisang

Author(s):  
Subrata Kumar Majumder ◽  
Sandip Ghosh ◽  
Arun Kumar Mitra ◽  
Gautam Kundu

Studies on two-phase gas-liquid co-current flow with non-Newtonian liquid system has attracted the attention of researchers over the years due to its wide-spread applications and importance in various different processes in chemical and biochemical industries, such as the process of two-phase in oil and gas wells, transportation systems of crude and refined products, and food processing in biochemical engineering and bio-reactors. This article examines the sole objective of experimental studies on gas holdup in Newtonian and non-Newtonian liquid slug flow within a range of gas and liquid flowrate of 0.5×10-4 to 1.92×10-4 m3/s and 1.6×10-4 to 6.7×10-4 m3/s, respectively. The present data was analyzed with different models. To predict gas holdup, correlations have been developed for individual system with Newtonian and non-Newtonian liquid. A general correlation was also developed to predict the gas holdup combing both the Newtonian and non-Newtonian liquid systems. The study of the gas holdup characteristics in gas-Newtonian and non-Newtonian liquid systems may give insight into a further understanding and modeling of this slug flow characteristics in industrial applications.


2013 ◽  
Vol 110 ◽  
pp. 816-821 ◽  
Author(s):  
Antonín Trojánek ◽  
Jan Langmaier ◽  
Stanislav Záliš ◽  
Zdeněk Samec

Author(s):  
Subrata Kumar Majumder ◽  
Sandip Ghosh ◽  
Gautam Kundu ◽  
Arun Kumar Mitra

Experimental study on two-phase pressure drop in a vertical pipe with air-Newtonian and non-Newtonian liquid in slug flow regime has been carried out within a range of gas and liquid flowrate of 0.5×10-4 to 1.92×10-4 m-3/s and 1.6×10-4 to 6.7×10-4 m3/s respectively. In the present study air and four types of liquids such as water, amyl alcohol, glycerin (two different concentrations), and CMC (Sodium Carboxymethyl Cellulose) are used. The present data were analyzed by two-phase friction method. To predict the two-phase pressure drop, correlations have been developed with Newtonian and non-Newtonian liquid. A general correlation was also developed to predict the two-phase pressure drop in a vertical column of diameter 0.01905 m and 3.4 m height combining both the Newtonian and non-Newtonian liquid systems.


1949 ◽  
Vol 22 (2) ◽  
pp. 320-332
Author(s):  
Geoffrey Gee

Abstract Experimental data are reported on the effects of vulcanization, extension, and temperature on the swelling of rubber. Although in qualitative agreement with a simple equation derived from a statistical theory of polymer solutions, these reveal quantitative discrepancies which are important in discussions of two-phase equilibria.


Sign in / Sign up

Export Citation Format

Share Document