Analysis of Hydrodynamics and Mass Transfer of Gas-Liquid and Liquid-Liquid Taylor Flows in Microchannels

Author(s):  
Rufat Abiev

Analysis of hydrodynamics and mass transfer Taylor flows in micro channels of both gas-liquid and liquid-liquid systems on the basis of classical theoretical approach with some simplifying assumptions was performed. Results of theoretical analysis for description of hydrodynamic parameters and mass transfer characteristics were confirmed by comparison with the author's own and available in literature experimental data. It was shown that the main parameters of two-phase Taylor flows could be quite precisely described theoretically: mean bubble/droplet velocity, liquid film thickness, real gas holdup (which is always smaller than so-called dynamic holdup), pressure drop. Peculiarities of liquid-liquid flows compared to gas-liquid Taylor flows in capillaries are discussed. Wettability effect on hydrodynamics was examined. Tools of mass transfer intensification of gas-liquid and liquid-liquid Taylor flow in micro channels are analyzed. Three-layer model for heat and mass transfer has been proposed and implemented for the case of solid-liquid mass transfer for gas-liquid Taylor flows; optimal process conditions for this process are found theoretically and discussed from physical point of view.

2006 ◽  
Author(s):  
Bhagavatula Venkata Ramana Murthy

Fluidized beds are widely used in industries for mixing solid particles with liquids as the solid is vigorously agitated by the liquid passing through the bed and the mixing of the solid ensures that there are practically no temperature gradients in the bed even with exothermic or endothermic reactions (Mixing and the segregation in a liquid fluidized of particles with different sizes and densities", The Canadian Journal of Chemical Engineering, 1988). The violent motion of the solid particles also gives high heat transfer rates to the wall or to cooling tubes immersed in the bed. Because of the fluidity of the solid particles, it is easy to pass solid from one vessel to another. In the present experimental work, the relative density between solid and liquid phases on pressure drop under fluidized condition has been studied using the solid-liquid systems namely, glass beads-water, glass beads-kerosene, plastic beads-kerosene and diamond sugar-kerosene. Pressure drop - liquid velocity and void fraction - liquid velocity relationships have been found for all the mentioned solid-liquid systems under fluidized condition and results have been noted. The effect of the nature of the fluid on the minimum fluidization velocity and the pressure drop has been studied. In addition to the pressure drop studies, mass transfer studies have also been conducted with diamond sugar-water system with and without fluidization and results have been obtained. In addition to these, comparison of bed voidage, pressure drop and minimum fluidization velocity between denser and lighter liquids have been studied and the results have been obtained. Also, the value of rate of mass transfer with fluidization is compared that without fluidization for diamond sugar-water system and the results have been obtained.


1982 ◽  
Vol 15 (4) ◽  
pp. 311-313 ◽  
Author(s):  
HIROYASU OHASHI ◽  
TAKUO SUGAWARA ◽  
KEN-ICHI KIKUCHI ◽  
MORITO TAKEDA

1967 ◽  
Vol 7 (02) ◽  
pp. 205-220 ◽  
Author(s):  
H.W. Price ◽  
D.A.T. Donohue

Abstract The system of equations describing displacement of a hydrocarbon liquid by a hydrocarbon vapor in a porous medium where mass transfer takes place between the phases is solved numerically for a variety of gas injection processes. Even though the method of solution is quite general, only systems with three hydrocarbon components are considered. Computer simulations of displacement processes wherein mass transfer between phases is both considered and neglected are compared, and it is shown that neglecting mass transfer can give pessimistic displacement efficiencies. Introduction The role of the gas displacement process in the recovery of petroleum has been subjected to a series of detailed analyses; as a result, a number of predictive models have been published in the literature. However, because of major simplifying assumptions, most of these models do not completely represent the physical system. As a result, the effect of making the simplifying assumptions is unknown. Therefore, a complete representation of this process one without major simplifying assumptions should lead to a full understanding of the process, and perhaps to methods of improving it. The general method of developing a model for two-phase fluid flow in a porous medium is to solve simultaneously the continuity equation, the energy equations and the equation-of-state for each phase under the prescribed initial and boundary conditions. For an isothermal system, the energy equations reduce to the momentum equation, Darcy's law. However, since natural gas is the vapor state of the reservoir liquid, interphase mass transfer may take place with concomitant changes in both the intensive and extensive thermodynamic properties of each phase. It is this phenomenon that has often been omitted in previous mathematical models. An additional relation, then, which accounts for mass transfer between the phases, must be included with the other equations to specify a complete model. Completely formulating the equations to be solved is not a difficult task but obtaining their solution has been intractable up to now. Availability of large-memory, high-speed digital computers now makes an attack on this formidable problem possible. This paper presents a preliminary study of the problem. Since this investigation is intended to be exploratory, it is restricted to the linear, horizontal, isothermal, two-phase viscous flow of oil and gas in an oil reservoir. In the early development of predictive models of this process, the reservoir system was considered as a unit and various forms of the material balance equation were proposed. Pressure and saturation gradients were than added in the Buckley-Leverett model. The Buckley-Leverett formulation considered the fluids to be incompressible; thus, the mathematical model reduces to a steady-state system. In the 1950's, studies incorporating numerical techniques were being published. These mathematical models differed in the efficiency of finite difference techniques, the inclusion or exclusion of capillarity or the number of space dimensions considered. To solve these nonlinear, partial differential equations, each phase was considered to be homogeneous with time; therefore, mass transfer between phases was neglected. The effect of mass transfer on the gas displacement process was first reported by Attra. He simulated the one-dimension flow system by a series of cells in each of which the fluids were equilibrated during a time step. In addition, the pressure throughout the system during each time step was predetermined and constant phase velocities were calculated according to the Buckley-Leverett incompressible fluid flow model. Welge et al. developed a model for the displacement of oil by an enriched gas where composition is considered to be a dependent variable. SPEJ P. 205ˆ


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6066
Author(s):  
Arijit A. Ganguli ◽  
Aniruddha B. Pandit

Hydrodynamics plays a major role in transport of heat and mass transfer in microchannels. This includes flow patterns and flow regimes in which the micro-channels are operated. The flow patterns have a major impact the transport properties. Another important aspect is the pressure drop in micro-channels. In the present review, the experimental and Computational Fluid Dynamics (CFD) studies covering all the above aspects have been covered. The effect of geometrical parameters like shape of channel, channel size, material of construction of channels; operating parameters like flow velocity, flow ratio and fluid properties have been presented and analyzed. Experimental and analytical work of different pressure drop models has also been presented. All the literature related to influence of flow patterns on transport properties like volumetric mass transfer coefficients (VMTC) and heat transfer coefficients (HTC) have been presented and analyzed. It is found that most works in Liquid-Liquid Extraction (LLE) systems have been carried out in slug flow and T-junctions. Models for coupled systems of flow and mass transfer have been presented and works carried out for different coupled systems have been listed. CFD simulations match experimental results within 20% deviations in quantitative and qualitative predictions of flow phenomena for most research articles referred in this review. There is a disparity in prediction of a generalized regime map and a generalized regime map for prediction of flow patterns for various systems would need the help of Artificial Intelligence.


Soil Research ◽  
1988 ◽  
Vol 26 (4) ◽  
pp. 561 ◽  
Author(s):  
JM Kirby ◽  
DE Smiles

In many circumstances, filtration of two-phase, solid-liquid systems can be described by theory based on Darcy's Law and an appropriate continuity equation. The theory requires that relations between the water content and (a) the water potential, and (b) the permeability are well defined. This paper describes experiments which permit calculation of both these relations in a water-bentonite suspension. The permeability function calculated directly from steady state experiments compares with that calculated indirectly from transient experiments, thus confirming the basic assumptions of the theory. It is shown that both the water content-water potential, and the water content-permeability relations are sensitive to solution salt concentration. However, the water potential-permeability relation is nearly independent of salt concentration, thus allowing considerable simplification in the information sufficient and necessary to characterize this system.


Sign in / Sign up

Export Citation Format

Share Document