Control of DVD Players; Focus & Tracking Control Loop

2004 ◽  
pp. 101-128
Author(s):  
Bohumil Hnilička ◽  
Alina Besançon-Voda ◽  
Giampaolo Filardi
2013 ◽  
Vol 798-799 ◽  
pp. 448-451
Author(s):  
Rui Yong Zhai ◽  
Wen Dong Zhang ◽  
Zhao Ying Zhou ◽  
Sheng Bo Sang ◽  
Pei Wei Li

This article considers the problem of trajectory tracking control for a micro fixed-wing unmanned air vehicle (UAV). With Bank-to-Turn (BTT) method to manage lateral deviation control of UAV, this paper discusses the outer loop guidance system, which separates the vehicle guidance problems into lateral control loop and longitudinal control loop. Based on the kinematic model of the coordinated turning of UAV, the aircraft can track a pre-specified flight path with desired error range. Flight test results on a fixed-wing UAV have indicated that the trajectory tracking control law is quite effective.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095013
Author(s):  
Chunjiang Bao ◽  
Jiwei Feng ◽  
Jian Wu ◽  
Shifu Liu ◽  
Guangfei Xu ◽  
...  

The current path tracking control method is usually based on the steering wheel angle loop, which often makes the driver lose control of the automatic driving control loop. In order to involve the driver in the automatic driving control loop, and to solve the vehicle path tracking control problem with system robustness and model uncertainty, this paper puts forward a steering torque control method based on model predictive control algorithm. Based on the vehicle model, this method introduces the steering system model and the steering resistance torque model, and calculates the optimal control torque of the vehicle through the real-time vehicle status, so as to make up for the model mismatch, interference and other uncertainties, and ensure the real-time participation of the driver in the automatic driving control loop. To combine the nonlinear vehicle dynamics model with the steering column model, and to take the vehicle state parameters as the feedback variables of the model predictive controller model, then input the solution of the steering superposition control rate into the vehicle model, the design of the steering controller is realized. Finally, to carry out the simulation of lane keeping based on CarSim software and Simulink control model, and the hardware in-the-loop test on the hardware in-the-loop experimental platform of CarSim/LabVIEW-RT. The simulation and test results indicate that the designed torque loop path tracking control method based on model predictive control can help the driver track the target path better.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Luis Amezquita-Brooks ◽  
Jesús Ulises Liceaga-Castro ◽  
Eduardo Liceaga-Castro ◽  
Daniel Martinez-Vazquez ◽  
Octavio Garcia-Salazar

Single-Input-Multiple-Output (SIMO) systems are found in several applications. Some of the main concerns are (1) the possibility of stabilizing all the outputs and (2) the possibility of attaining independent tracking control of all the outputs. Whereas the first issue can be easily be elucidated, the second has proven to be impossible in all but a few systems. In many cases one practical option is to use the input to drive a main output, taking care that the behavior of the remaining secondary outputs is acceptable. In this configuration, in addition to the features of the main control loop, the perturbation rejection properties of the secondary outputs become important. This article analyzes the structural properties, stability, and perturbation rejection characteristics of SIMO systems. The article presents fundamental conclusions regarding the relationship of the main control loop and the perturbation rejection characteristics of the secondary outputs. A simple and intuitive example is used to show how the theoretical findings can be used to improve the design of the main control loop through its frequency domain characteristics. The results are developed using simple frequency domain theoretical elements, making the findings relevant for both engineering applications and deriving further theoretical developments.


2022 ◽  
Vol 21 ◽  
pp. 18-22
Author(s):  
Tain-Sou Tsay

A digital controller for exact command tracking control without integration is derived from a periodic series. The ratios of adjacent values will be converged to unities after the output has tracked the reference input command. Integration in control loop usually introduces phase lag to slow command response and degrade performance.


Author(s):  
Atsushi SAKAMOTO ◽  
Yuichi IKEDA ◽  
Isao YAMAGUCHI ◽  
Takashi KIDA

Sign in / Sign up

Export Citation Format

Share Document