Hybrid Sets of Merged Data for Modal Model Applications

Author(s):  
Louis Thibault ◽  
Bruce LeBlanc ◽  
Peter Avitabile
Keyword(s):  
Author(s):  
Mahmoud El-kafafy ◽  
Giampiero Accardo ◽  
Bart Peeters ◽  
Karl Janssens ◽  
Tim De Troyer ◽  
...  

2018 ◽  
Vol 47 (4) ◽  
pp. 575-588 ◽  
Author(s):  
Alan D. Baddeley ◽  
Graham J. Hitch ◽  
Richard J. Allen

Author(s):  
Javier Avalos ◽  
Lanae A. Richter ◽  
X. Q. Wang ◽  
Raghavendra Murthy ◽  
Marc P. Mignolet

This paper addresses the stochastic modeling of the stiffness matrix of slender uncertain curved beams that are forced fit into a clamped-clamped fixture designed for straight beams. Because of the misfit with the clamps, the final shape of the clamped-clamped beams is not straight and they are subjected to an axial preload. Both of these features are uncertain given the uncertainty on the initial, undeformed shape of the beams and affect significantly the stiffness matrix associated with small motions around the clamped-clamped configuration. A modal model using linear modes of the straight clamped-clamped beam with a randomized stiffness matrix is employed to characterize the linear dynamic behavior of the uncertain beams. This stiffness matrix is modeled using a mixed nonparametric-parametric stochastic model in which the nonparametric (maximum entropy) component is used to model the uncertainty in final shape while the preload is explicitly, parametrically included in the stiffness matrix representation. Finally, a maximum likelihood framework is proposed for the identification of the parameters associated with the uncertainty level and the mean model, or part thereof, using either natural frequencies only or natural frequencies and mode shape information of the beams around their final clamped-clamped state. To validate these concepts, a simulated, computational experiment was conducted within Nastran to produce a population of natural frequencies and mode shapes of uncertain slender curved beams after clamping. The application of the above concepts to this simulated data led to a very good to excellent matching of the probability density functions of the natural frequencies and the modal components, even though this information was not used in the identification process. These results strongly suggest the applicability of the proposed stochastic model.


2019 ◽  
Vol 48 (3) ◽  
pp. 455-468 ◽  
Author(s):  
Gaën Plancher ◽  
Pierre Barrouillet
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document