Pulsatile Flow in a Rigid Tube

2000 ◽  
pp. 67-112 ◽  
Author(s):  
M. Zamir
Keyword(s):  
2002 ◽  
Vol 13 (08) ◽  
pp. 1119-1134 ◽  
Author(s):  
A. M. ARTOLI ◽  
A. G. HOEKSTRA ◽  
P. M. A. SLOOT

We present detailed analysis of the accuracy of the lattice Boltzmann BGK method in simulating pulsatile flow in a 2D channel and a 3D tube. For the 2D oscillatory flow, we have observed a half time-steps shift between the theory and the simulation, that enhances the accuracy at least one order of magnitude. For 3D tube flow, we have tested the accuracy of the lattice Boltzmann BGK method in recovering the Womersley solution for pulsatile flow in a rigid tube with a sinusoidal pressure gradient. The obtained flow parameters have been compared to the analytical solutions. The influence of different boundary conditions such as the bounce-back and inlet-outlet boundary conditions on the accuracy was studied. Relative errors of the order of 0.001 in 2D with the bounce back on the nodes have been achieved. For the 3D simulations, it has been possible to reduce the error from 15% with the simple bounce-back to less than 5% with a curved boundary condition.


2016 ◽  
Vol 56 (2) ◽  
pp. 99 ◽  
Author(s):  
David Hromadka ◽  
Hynek Chlup ◽  
Rudolf Žitný

<p>This paper presents an approximate solution of the pulsatile flow of a Newtonian fluid in the laminar flow regime in a rigid tube of constant diameter. The model is represented by two ordinary differential equations. The first equation describes the time evolution of the total flow rate, and the<br />second equation characterizes the reverse flow near the wall. These equations are derived from the momentum balance equation and from the kinetic energy equation, respectively. The accuracy of the derived equations is compared with a solution in which the finite difference method is applied to a partial differential equation.</p>


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
T. E. Moschandreou ◽  
C. G. Ellis ◽  
D. Goldman

An approximate-analytical solution method is presented for the problem of mass transfer in a rigid tube with pulsatile flow. For the case of constant wall concentration, it is shown that the generalized integral transform (GIT) method can be used to obtain a solution in terms of a perturbation expansion, where the coefficients of each term are given by a system of coupled ordinary differential equations. Truncating the system at some large value of the parameter N, an approximate solution for the system is obtained for the first term in the perturbation expansion, and the GIT-based solution is verified by comparison to a numerical solution. The GIT approximate-analytical solution indicates that for small to moderate nondimensional frequencies for any distance from the inlet of the tube, there is a positive peak in the bulk concentration C1b due to pulsation, thereby, producing a higher mass transfer mixing efficiency in the tube. As we further increase the frequency, the positive peak is followed by a negative peak in the time-averaged bulk concentration and then the bulk concentration C1b oscillates and dampens to zero. Initially, for small frequencies the relative Sherwood number is negative indicating that the effect of pulsation tends to reduce mass transfer. There is a band of frequencies, where the relative Sherwood number is positive indicating that the effect of pulsation tends to increase mass transfer. The positive peak in bulk concentration corresponds to a matching of the phase of the pulsatile velocity and the concentration, respectively, where the unique maximum of both occur for certain time in the cycle. The oscillatory component of concentration is also determined radially in the tube where the concentration develops first near the wall of the tube, and the lobes of the concentration curves increase with increasing distance downstream until the concentration becomes fully developed. The GIT method proves to be a working approach to solve the first two perturbation terms in the governing equations involved.


1997 ◽  
Vol 119 (2) ◽  
pp. 213-216 ◽  
Author(s):  
Z. D. Shi ◽  
S. H. Winoto ◽  
T. S. Lee

Based on cam-piston-valve arrangement, a mechanical pulsatile flow generator is designed to investigate sinusoidal flow and other types of pulsatile flow in straight rigid tube. Measurement reveals the relation between pressure gradient and flow rate. Numerical simulation using the k-ε turbulence model are carried out to compare the pulsatile flow produced by the generator with a sinusoidal flow and a physiological flow in a rigid tube. The results show that the pulsatile flow generated has similar dynamic properties to the physiological flow. Hence, the present setup can be used for in-vitro investigation of biofluid phenomena.


1971 ◽  
Vol 4 (3) ◽  
pp. 229-231 ◽  
Author(s):  
L.E. Bergman ◽  
K.J. DeWitt ◽  
R.C. Fernandez ◽  
M.R. Botwin

1983 ◽  
Vol 105 (2) ◽  
pp. 112-119 ◽  
Author(s):  
E. Kimmel ◽  
U. Dinnar

Blood flow-through segments of large arteries of man, between adjacent bifurcations, can be modeled as pulsatile flow in tapered converging tubes, of small angle of convergence, up to 2 deg. Assuming linearity, rigid tube and homogeneous Newtonian fluid, the physiological flow field is governed by the Navier-Stokes equation with dominant nonlinear and unsteady terms. Analytical solution of this problem is presented based on an integral method technique. The solution shows that even for small tapering the flow pattern is markedly different from the flow obtained for a uniform tube. The periodic shear stresses at the wall and pressure gradients increase both in their mean value and amplitude with increased distance downstream. These results are highly significant in the process of atherogenesis.


Sign in / Sign up

Export Citation Format

Share Document