Activin Signaling Pathways and Their Role in Xenopus Mesoderm Formation

1997 ◽  
pp. 244-253
Author(s):  
Tetsuro Watabe ◽  
Albert F. Candia ◽  
Ken W.-Y. Cho
Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1975-1984 ◽  
Author(s):  
M. Nagel ◽  
R. Winklbauer

The fibronectin fibril matrix on the blastocoel roof of the Xenopus gastrula contains guidance cues that determine the direction of mesoderm cell migration. The underlying guidance-related polarity of the blastocoel roof is established in the late blastula under the influence of an instructive signal from the vegetal half of the embryo, in particular from the mesoderm. Formation of an oriented substratum depends on functional activin and FGF signaling pathways in the blastocoel roof. Besides being involved in tissue polarization, activin and FGF also affect fibronectin matrix assembly. Activin treatment of the blastocoel roof inhibits fibril formation, whereas FGF modulates the structure of the fibril network. The presence of intact fibronectin fibrils is permissive for directional mesoderm migration on the blastocoel roof extracellular matrix.


2011 ◽  
Vol 34 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Kerstin Krieglstein ◽  
Fang Zheng ◽  
Klaus Unsicker ◽  
Christian Alzheimer

2003 ◽  
Vol 68 (5) ◽  
pp. 1877-1887 ◽  
Author(s):  
Joëlle Dupont ◽  
Judith McNeilly ◽  
Anne Vaiman ◽  
Sylvie Canepa ◽  
Yves Combarnous ◽  
...  

2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
P Balachandran ◽  
FH Sarkar ◽  
DS Pasco

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
J Su ◽  
W Chamulitrat ◽  
W Stremmel ◽  
A Pathil

Sign in / Sign up

Export Citation Format

Share Document