High-Temperature Thermal Desorption Spectroscopy

Author(s):  
John T. Yates
2014 ◽  
Vol 783-786 ◽  
pp. 264-269 ◽  
Author(s):  
Iya I. Tashlykova-Bushkevich ◽  
Keitaro Horikawa ◽  
Goroh Itoh

Hydrogen desorption kinetics for rapidly solidified high purity Al and Al-Cr alloy foils containing 1.0, 1.5 and 3.0 at % Cr were investigated by means of thermal desorption analysis (TDA) at a heating rate of 3.3°C/min. For the first time, it was found that oxide inclusions of Al2O3 are dominant high-temperature hydrogen traps compared with pores and secondary phase precipitates resulted in rapid solidification of Al and its alloys. The correspondent high-temperature evolution rate peak was identified to be positioned at 600°C for high purity Al and shifted to 630°C for Al-Cr alloys. Amount of hydrogen trapped by dislocations increases in the alloys depending on Cr content. Microstructural hydrogen trapping behaviour in low-and intermediate temperature regions observed here was in coincidence with previous data obtained for RS materials using thermal desorption spectroscopy (TDS). The present results on hydrogen thermal desorption evolution indicate that the effect of oxide surface layers becomes remarkable in TDA measurements and show advantages in combinations of both desorption analysis methods to investigate hydrogen desorption kinetics in materials.


2020 ◽  
Vol 91 (12) ◽  
pp. 125104
Author(s):  
Reinhard Stadlmayr ◽  
Paul Stefan Szabo ◽  
Herbert Biber ◽  
Hans Rudolf Koslowski ◽  
Elisabeth Kadletz ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Patrick Fayek ◽  
Sebastian Esser ◽  
Vanessa Quiroz ◽  
Chong Dae Kim

Hydrogen is nowadays in focus as an energy carrier that is locally emission free. Especially in combination with fuel-cells, hydrogen offers the possibility of a CO2 neutral mobility, provided that the hydrogen is produced with renewable energy. Structural parts of automotive components are often made of steel, but unfortunately they may show degradation of the mechanical properties when in contact with hydrogen. Under certain service conditions, hydrogen uptake into the applied material can occur. To ensure a safe operation of automotive components, it is therefore necessary to investigate the time, temperature and pressure dependent hydrogen uptake of certain steels, e.g., to deduct suitable testing concepts that also consider a long term service application. To investigate the material dependent hydrogen uptake, a tubular autoclave was set-up. The underlying paper describes the set-up of this autoclave that can be pressurised up to 20 MPa at room temperature and can be heated up to a temperature of 250 °C, due to an externally applied heating sleeve. The second focus of the paper is the investigation of the pressure dependent hydrogen solubility of the martensitic stainless steel 1.4418. The autoclave offers a very fast insertion and exertion of samples and therefore has significant advantages compared to commonly larger autoclaves. Results of hydrogen charging experiments are presented, that were conducted on the Nickel-martensitic stainless steel 1.4418. Cylindrical samples 3 mm in diameter and 10 mm in length were hydrogen charged within the autoclave and subsequently measured using thermal desorption spectroscopy (TDS). The results show how hydrogen sorption curves can be effectively collected to investigate its dependence on time, temperature and hydrogen pressure, thus enabling, e.g., the deduction of hydrogen diffusion coefficients and hydrogen pre-charging concepts for material testing.


1994 ◽  
Vol 217 (1-2) ◽  
pp. 154-160 ◽  
Author(s):  
T. Yamaki ◽  
Y. Gotoh ◽  
T. Ando ◽  
R. Jimbou ◽  
N. Ogiwara ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1571
Author(s):  
Patricia Jové ◽  
Marina Vives-Mestres ◽  
Raquel De Nadal ◽  
Maria Verdum

Compounds 2,4,6-trichloroanisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA) and pentachloroanisole (PCA), 2-methylisoborneol (2MIB) and geosmin (GSM) have been reported as being responsible for cork and wine taint. A sustainable method based on thermal desorption-gas chromatography–mass spectrometry (TD-GC/MS) has been developed and optimized, taking into account desorption parameters and chromatographic and mass spectrometric conditions. The combination of parameters that jointly maximized the compound detection was as follows: desorption temperature at 300 °C, desorption time at 30 min, cryo-temperature at 20 °C and trap high temperature at 305 °C. The proposed methodology showed a good linearity (R ≤ 0.994) within the tested range (from 0.1 to 2 ng) for all target compounds. The precision expressed as repeatability and reproducibility was RSD < 10% in both. The limits of quantification ranged from 0.05 to 0.1 ng. The developed methodology and the sampling rates (R-values) of all targeted compounds (from 0.013 to 0.071 m3 h−1) were applied to the air analysis of two wineries. The results showed that the developed methodology is a sustainable and useful tool for the determination of these compounds in air.


2018 ◽  
Vol 13 ◽  
pp. 1330-1335
Author(s):  
A. Laureys ◽  
L. Claeys ◽  
M. Pinson ◽  
T. Depover ◽  
K. Verbeken

Sign in / Sign up

Export Citation Format

Share Document