Simple Lithium Metal Evaporation Source

Author(s):  
John T. Yates
Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


2020 ◽  
Author(s):  
Urbi Pal ◽  
Fangfang Chen ◽  
Derick Gyabang ◽  
Thushan Pathirana ◽  
Binayak Roy ◽  
...  

We explore a novel ether aided superconcentrated ionic liquid electrolyte; a combination of ionic liquid, <i>N</i>-propyl-<i>N</i>-methylpyrrolidinium bis(fluorosulfonyl)imide (C<sub>3</sub>mpyrFSI) and ether solvent, <i>1,2</i> dimethoxy ethane (DME) with 3.2 mol/kg LiFSI salt, which offers an alternative ion-transport mechanism and improves the overall fluidity of the electrolyte. The molecular dynamics (MD) study reveals that the coordination environment of lithium in the ether aided ionic liquid system offers a coexistence of both the ether DME and FSI anion simultaneously and the absence of ‘free’, uncoordinated DME solvent. These structures lead to very fast kinetics and improved current density for lithium deposition-dissolution processes. Hence the electrolyte is used in a lithium metal battery against a high mass loading (~12 mg/cm<sup>2</sup>) LFP cathode which was cycled at a relatively high current rate of 1mA/cm<sup>2</sup> for 350 cycles without capacity fading and offered an overall coulombic efficiency of >99.8 %. Additionally, the rate performance demonstrated that this electrolyte is capable of passing current density as high as 7mA/cm<sup>2</sup> without any electrolytic decomposition and offers a superior capacity retention. We have also demonstrated an ‘anode free’ LFP-Cu cell which was cycled over 50 cycles and achieved an average coulombic efficiency of 98.74%. The coordination chemistry and (electro)chemical understanding as well as the excellent cycling stability collectively leads toward a breakthrough in realizing the practical applicability of this ether aided ionic liquid electrolytes in lithium metal battery applications, while delivering high energy density in a prototype cell.


Small Methods ◽  
2021 ◽  
pp. 2001035
Author(s):  
Zhiyuan Han ◽  
Chen Zhang ◽  
Qiaowei Lin ◽  
Yunbo Zhang ◽  
Yaqian Deng ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2468
Author(s):  
Hui Zhan ◽  
Mengjun Wu ◽  
Rui Wang ◽  
Shuohao Wu ◽  
Hao Li ◽  
...  

Composite polymer electrolytes (CPEs) incorporate the advantages of solid polymer electrolytes (SPEs) and inorganic solid electrolytes (ISEs), which have shown huge potential in the application of safe lithium-metal batteries (LMBs). Effectively avoiding the agglomeration of inorganic fillers in the polymer matrix during the organic–inorganic mixing process is very important for the properties of the composite electrolyte. Herein, a partial cross-linked PEO-based CPE was prepared by porous vinyl-functionalized silicon (p-V-SiO2) nanoparticles as fillers and poly (ethylene glycol diacrylate) (PEGDA) as cross-linkers. By combining the mechanical rigidity of ceramic fillers and the flexibility of PEO, the as-made electrolyte membranes had excellent mechanical properties. The big special surface area and pore volume of nanoparticles inhibited PEO recrystallization and promoted the dissolution of lithium salt. Chemical bonding improved the interfacial compatibility between organic and inorganic materials and facilitated the homogenization of lithium-ion flow. As a result, the symmetric Li|CPE|Li cells could operate stably over 450 h without a short circuit. All solid Li|LiFePO4 batteries were constructed with this composite electrolyte and showed excellent rate and cycling performances. The first discharge-specific capacity of the assembled battery was 155.1 mA h g−1, and the capacity retention was 91% after operating for 300 cycles at 0.5 C. These results demonstrated that the chemical grafting of porous inorganic materials and cross-linking polymerization can greatly improve the properties of CPEs.


Nature Energy ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 378-387 ◽  
Author(s):  
Chengbin Jin ◽  
Tiefeng Liu ◽  
Ouwei Sheng ◽  
Matthew Li ◽  
Tongchao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document