Biochemical Analyses of oli1 and oli2 Gene Mutations Determining Primary Sequence Changes in Subunits 9 and 6 of Yeast ATP Synthase

Author(s):  
Sybella Meltzer ◽  
Tracy A. Willson ◽  
Linton C. Watkins ◽  
Phillip Nagley ◽  
Sangkot Marzuki ◽  
...  
2016 ◽  
Vol 148 (6) ◽  
pp. 441-457 ◽  
Author(s):  
Vanessa Leone ◽  
José D. Faraldo-Gómez

Two subunits within the transmembrane domain of the ATP synthase—the c-ring and subunit a—energize the production of 90% of cellular ATP by transducing an electrochemical gradient of H+ or Na+ into rotational motion. The nature of this turbine-like energy conversion mechanism has been elusive for decades, owing to the lack of definitive structural information on subunit a or its c-ring interface. In a recent breakthrough, several structures of this complex were resolved by cryo–electron microscopy (cryo-EM), but the modest resolution of the data has led to divergent interpretations. Moreover, the unexpected architecture of the complex has cast doubts on a wealth of earlier biochemical analyses conducted to probe this structure. Here, we use quantitative molecular-modeling methods to derive a structure of the a–c complex that is not only objectively consistent with the cryo-EM data, but also with correlated mutation analyses of both subunits and with prior cross-linking and cysteine accessibility measurements. This systematic, integrative approach reveals unambiguously the topology of subunit a and its relationship with the c-ring. Mapping of known Cd2+ block sites and conserved protonatable residues onto the structure delineates two noncontiguous pathways across the complex, connecting two adjacent proton-binding sites in the c-ring to the space on either side of the membrane. The location of these binding sites and of a strictly conserved arginine on subunit a, which serves to prevent protons from hopping between them, explains the directionality of the rotary mechanism and its strict coupling to the proton-motive force. Additionally, mapping of mutations conferring resistance to oligomycin unexpectedly reveals that this prototypical inhibitor may bind to two distinct sites at the a–c interface, explaining its ability to block the mechanism of the enzyme irrespective of the direction of rotation of the c-ring. In summary, this study is a stepping stone toward establishing the mechanism of the ATP synthase at the atomic level.


Author(s):  
D. C. Brindley ◽  
M. McGill

Morphological and cytochemical studies of platelets have reported a surface coat, or glycocalyx, external to the plasma membrane (1). Biochemical analyses have likewise confirmed the highly adsorptive properties of platelets as transporters of coagulation factors (2). However, visualization of the platelet membrane by conventional EM procedures does not reflect this special relationship between the platelet and its plasma environment. By the routine method of alcohol-propylene oxide dehydration for Epon embedding, the lipid bilayer nature of the platelet membrane appears similar to other blood cells (Fig. 1). A new rapid embedding technique using dimethoxypropane (DMP) as dehydrating agent (13) has permitted ultrastructural analyses of the surface features of the platelet-plasma interface.Aliquots of human or rabbit platelet-rich plasma (PRP) were added to equal volumes of 6% glutaraldehyde in Millonig's buffer at 37° for 45 minutes, rinsed in buffer and postfixed in 1% osmium in Millonig's buffer for 45 minutes.


Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.


2000 ◽  
Vol 111 (3) ◽  
pp. 954-964 ◽  
Author(s):  
Robert Kaplan ◽  
Jagadeesh Gabbeta ◽  
Ling Sun ◽  
Guang Fen Mao ◽  
A. Koneti Rao

Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A110-A110
Author(s):  
McTaggart Sj ◽  
Algar E ◽  
Chow Cw ◽  
Powell Hr ◽  
Jones CL.

1992 ◽  
Vol 1101 (2) ◽  
pp. 232-235 ◽  
Author(s):  
G SCHAFER ◽  
M MEYERINGVOS
Keyword(s):  

2004 ◽  
Vol 171 (4S) ◽  
pp. 282-282
Author(s):  
Markus D. Sachs ◽  
Horst Schlechte ◽  
Katrin Schiemenz ◽  
Severin V. Lenk ◽  
Dietmar Schnorr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document