Morphological and biochemical analyses of changes in rat hepatocytes related to wine and ethanol consumption

Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.

1968 ◽  
Vol 16 (5) ◽  
pp. 299-319 ◽  
Author(s):  
ALEX B. NOVIKOFF ◽  
ARLINE ALBALA ◽  
LUIS BIEMPICA

The B-16 and Harding-Passey mouse melanomas were studied by light microscopy (tyrosinase, acid phosphatase, aryl sulfatase, thiamine pyrophosphatase and inosine diphosphatase activities) and electron microscopy (morphology and tyrosinase and acid phosphatase activities). Lysosomal enzyme activity is present in individual premelanosomes and melanosomes as well as in compound melanosomes. Acid phosphatase and tyrosinase activities are present in a Golgi-associated system of smooth endoplasmic reticulum (GERL) and small vesicles related to it. The acid phosphatase and tyrosinase activities of premelanosomes, and morphologic appearances, support the hypothesis that the granules arise from GERL. On the basis of the evidence presented, it is suggested that compound melanosomes arise within melanoma cells by autophagy.


Nature ◽  
1956 ◽  
Vol 177 (4514) ◽  
pp. 842-843 ◽  
Author(s):  
S. E. LEWIS ◽  
G. M. PRICE

Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 251-288
Author(s):  
R. L. Gardner

Conditions were found for staining whole mid-gestation capsular parietal endoderms and visceral yolk sacs for malic enzyme activity that gave excellent discrimination between wildtype (Mod-1+/Mod-1+) cells and mutant (Mod-ln/Mod-1n) cells that lack the cytoplasmic form of the enzyme. Reciprocal blastocyst injection experiments were undertaken in which single primitive endoderm cells of one genotype were transplanted into embryos of the other genotype. In addition, Mod-1+/Mod-1+ early inner cell mass (ICM) cells were injected into Mod-1n/Mod-1n blastocysts, either in groups of two or three singletons or as daughter cell pairs. A substantial proportion of the resulting conceptuses showed mosaic histochemical staining in the parietal endoderm, visceral yolk sac, or in both these membranes. Stained cells were invariably intimately intermixed with unstained cells in the mosaic parietal endoderms. In contrast, one or both of two distinct patterns of staining could be discerned in mosaic visceral yolk sacs. The first, a conspicuously ‘coherent’ pattern, was found to be due to endodermal chimaerism; the second, a more diffuse pattern, was attributable to chimaerism in the mesodermal layer of this membrane. The overall distribution of cells with donor staining characteristics resulting from primitive endoderm versus early ICM cell injections was consistent with findings in earlier experiments in which allozymes of glucosephosphate isomerase were used as markers. The conspicuous lack of phenotypically intermediate cells in predominantly stained areas of mosaic membranes suggested that the histochemical difference between Mod-1+/Mod-1+ and Mod-1n/Mod-ln genotypes was cell-autonomous. This conclusion was strengthened by the results of staining mixed in vitro cultures of parietal endoderm in which presence or absence of phagocytosed melanin granules was used as an independent means of distinguishing wild type from null cells. By substituting tetranitro blue tetrazolium for nitro blue tetrazolium in the incubation medium, satisfactory differential staining was obtained for both the extraembryonic endoderm and other tissues of earlier postimplantation wild type versus null embryos. Finally, absence of cytoplasmic malic enzyme activity does not appear to have a significant effect on the viability or behaviour of mutant cells.


1985 ◽  
Vol 100 (6) ◽  
pp. 1922-1929 ◽  
Author(s):  
B F McEwen ◽  
W J Arion

Pathogenic staphylococci secrete a number of exotoxins, including alpha-toxin. alpha-Toxin induces lysis of erythrocytes and liposomes when its 3S protein monomers associate with the lipid bilayer and form a hexomeric transmembrane channel 3 nm in diameter. We have used alpha-toxin to render rat hepatocytes 93-100% permeable to trypan blue with a lactate dehydrogenase leakage less than or equal to 22%. Treatment conditions included incubation for 5-10 min at 37 degrees C and pH 7.0 with an alpha-toxin concentration of 4-35 human hemolytic U/ml and a cell concentration of 13-21 mg dry wt/ml. Scanning electron microscopy revealed signs of swelling in the treated hepatocytes, but there were no large lesions or gross damage to the cell surface. Transmission electron microscopy indicated that the nucleus, mitochondria, and cytoplasm were similar in control and treated cells and both had large regions of well-defined lamellar rough endoplasmic reticulum. Comparisons of the mannose-6-phosphatase and glucose-6-phosphatase activities demonstrated that 5-10 U/ml alpha-toxin rendered cells freely permeable to glucose-6-phosphate, while substantially preserving the selective permeability of the membranes of the endoplasmic reticulum and the functionality of the glucose-6-phosphatase system. Thus, alpha-toxin appears to have significant potential as a means to induce selective permeability to small ions. It should make possible the study of a variety of cellular functions in situ.


1998 ◽  
Vol 180 (11) ◽  
pp. 2875-2882 ◽  
Author(s):  
Eckhard Boles ◽  
Patricia de Jong-Gubbels ◽  
Jack T. Pronk

ABSTRACT Pyruvate, a precursor for several amino acids, can be synthesized from phosphoenolpyruvate by pyruvate kinase. Nevertheless, pyk1 pyk2 mutants of Saccharomyces cerevisiae devoid of pyruvate kinase activity grew normally on ethanol in defined media, indicating the presence of an alternative route for pyruvate synthesis. A candidate for this role is malic enzyme, which catalyzes the oxidative decarboxylation of malate to pyruvate. Disruption of open reading frame YKL029c, which is homologous to malic enzyme genes from other organisms, abolished malic enzyme activity in extracts of glucose-grown cells. Conversely, overexpression ofYKL029c/MAE1 from the MET25 promoter resulted in an up to 33-fold increase of malic enzyme activity. Growth studies with mutants demonstrated that presence of either Pyk1p or Mae1p is required for growth on ethanol. Mutants lacking both enzymes could be rescued by addition of alanine or pyruvate to ethanol cultures. Disruption of MAE1 alone did not result in a clear phenotype. Regulation of MAE1 was studied by determining enzyme activities and MAE1 mRNA levels in wild-type cultures and by measuring β-galactosidase activities in a strain carrying a MAE1::lacZ fusion. Both in shake flask cultures and in carbon-limited chemostat cultures,MAE1 was constitutively expressed. A three- to fourfold induction was observed during anaerobic growth on glucose. Subcellular fractionation experiments indicated that malic enzyme in S. cerevisiae is a mitochondrial enzyme. Its regulation and localization suggest a role in the provision of intramitochondrial NADPH or pyruvate under anaerobic growth conditions. However, since null mutants could still grow anaerobically, this function is apparently not essential.


2006 ◽  
Vol 188 (13) ◽  
pp. 4727-4736 ◽  
Author(s):  
Guillaume Lerondel ◽  
Thierry Doan ◽  
Nicola Zamboni ◽  
Uwe Sauer ◽  
Stéphane Aymerich

ABSTRACT The Bacillus subtilis genome contains several sets of paralogs. An extreme case is the four putative malic enzyme genes maeA, malS, ytsJ, and mleA. maeA was demonstrated to encode malic enzyme activity, to be inducible by malate, but also to be dispensable for growth on malate. We report systematic experiments to test whether these four genes ensure backup or cover different functions. Analysis of single- and multiple-mutant strains demonstrated that ytsJ has a major physiological role in malate utilization for which none of the other three genes could compensate. In contrast, maeA, malS, and mleA had distinct roles in malate utilization for which they could compensate one another. The four proteins exhibited malic enzyme activity; MalS, MleA, and MaeA exhibited 4- to 90-fold higher activities with NAD+ than with NADP+. YtsJ activity, in contrast, was 70-fold higher with NADP+ than with NAD+, with Km values of 0.055 and 2.8 mM, respectively. lacZ fusions revealed strong transcription of ytsJ, twofold higher in malate than in glucose medium, but weak transcription of malS and mleA. In contrast, mleA was strongly transcribed in complex medium. Metabolic flux analysis confirmed the major role of YtsJ in malate-to-pyruvate interconversion. While overexpression of the NADP-dependent Escherichia coli malic enzyme MaeB did not suppress the growth defect of a ytsJ mutant on malate, overexpression of the transhydrogenase UdhA from E. coli partially suppressed it. These results suggest an additional physiological role of YtsJ beyond that of malate-to-pyruvate conversion.


1984 ◽  
Vol 246 (2) ◽  
pp. E123-E128 ◽  
Author(s):  
A. Shepherd ◽  
M. P. Cleary

Dehydroepiandrosterone (DHEA) is a known noncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD). In the present investigation, the effects of chronic DHEA treatment on G6PD and several other enzymes involved in lipid metabolism were examined in lean and obese Zucker rats. Significant decreases in body weight were found in DHEA-treated rats in comparison with nontreated rats. In lean rats, DHEA treatment did not decrease either liver or adipose tissue G6PD and fatty acid synthetase activity, but malic enzyme activity was increased. In obese rats, decreased liver and adipose tissue G6PD and fatty acid synthetase activities were found. Malic enzyme activity in liver of obese DHEA rats was increased but not in adipose tissue. Adipose tissue lipoprotein lipase activity was decreased in both lean and obese DHEA rats. Serum insulin in obese DHEA rats was also decreased compared with control obese rats. These results indicate that the inhibition of G6PD may not be the mechanism of action of the antiobesity effect of DHEA. However, the metabolic effects of DHEA seen in obese rats may contribute to its antiobesity action.


1986 ◽  
Vol 236 (2) ◽  
pp. 441-445 ◽  
Author(s):  
M F Lobato ◽  
M Ros ◽  
F J Moreno ◽  
J P García-Ruíz

Cytosolic malic enzyme was purified from rat mammary gland by L-malate affinity chromatography. The pure enzyme obtained was used to produce a specific antiserum in a rabbit. Relative synthesis of malic enzyme in the mammary gland of mid-lactating rats was 0.097%, measured by labelling the enzyme in isolated acini. When food was removed, malic enzyme synthesis decreased to 35% and 20% of the control value at 4 and 6 h respectively. Incorporation of [3H]leucine into soluble proteins was constant during the first 6 h of starvation. When lactating rats (maintained with their pups) were starved for 24 h and then re-fed, the relative rate of enzyme synthesis increased 2.5-, 4-, and 4.5-fold at 3 h, 6 h and 18 h respectively after initiation of re-feeding. The relative rate of malic enzyme synthesis was about 50% of normal at 15 h after weaning, whereas the rate of synthesis of soluble proteins did not change. Administration of bromocriptine or adrenalectomy of lactating rats decreased the relative rate of synthesis of malic enzyme by 40% or 30% respectively; these effects were counteracted by hormone supplementation. Hormone therapy also caused an increase in the rate of incorporation of [3H]leucine into soluble proteins and in malic enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document