The Role of Suppresor T Lymphocytes in the Maintenance of Tolerance to Alloantigens in Bone Marrow Chimeras Prepared with Total Lymphoid Irradiation (TLI)

Author(s):  
S. Slavin ◽  
M. Weigensberg ◽  
S. Bar ◽  
L. Weiss ◽  
S. Morecki
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2319-2319
Author(s):  
Teerawit Supakorndej ◽  
Mahil Rao ◽  
Daniel Link

Abstract Abstract 2319 Granulocyte-colony stimulating factor (G-CSF) is the prototypic agent used to mobilize hematopoietic stem and progenitor cells (HSPCs) into the blood where they can then be harvested for stem cell transplantation. G-CSF acts in a non-cell-intrinsic fashion to induce HSPC mobilization. We recently showed that G-CSF signaling in a CD68+ monocyte/macrophage lineage cell within the bone marrow initiates the HSPC mobilization cascade (Christopher et al., 2011). Consistent with this finding, two other groups showed that ablation of monocytes/macrophages induces HSPC mobilization (Winkler et al., 2010; Chow et al., 2011). CD68 marks a heterogeneous cell population that includes monocytes, macrophages, myeloid dendritic cells, and osteoclasts. To further define the relevant cell population(s) for HSPC mobilization by G-CSF, we first examined the role of osteoclasts. Receptor activator of NF-kappaB (RANK) signaling is required for osteoclast development. Osteoprotegerin (OPG) is a decoy receptor for RANK ligand, and treatment with OPG-Fc (a stabilized form of OPG) results in osteoclast ablation in mice. We treated mice with 100 μg of OPG-Fc and documented complete osteoclast ablation by histomorphometry. Osteoclast ablation did not result in constitutive HSPC mobilization, nor did it affect G-CSF-induced HSPC mobilization. To further assess the role of osteoclasts, we transplanted RANK−/− fetal liver cells into irradiated Csf3r−/− (G-CSF receptor deficient) recipients. Since RANK is required for osteoclast development, the osteoclasts in these bone marrow chimeras lack the G-CSFR, while other hematopoietic cells (including monocytes/macrophages) are G-CSFR sufficient. Again, G-CSF-induced HSPC mobilization in these mice was normal. Based on these data, we conclude that osteoclasts are dispensable for HSPC mobilization by G-CSF. We next quantified changes in monocytic/macrophage cell populations in the bone marrow after G-CSF treatment (250 μg/kg per day for 5 days) using a novel multi-color flow cytometry assay that includes CD115, F4/80, MHC class II, Gr-1, B220, and CD11c. Using this assay, we observed a significant decrease in macrophages (11.8 ± 3.6-fold) and, surprisingly, myeloid dendritic cells (MDCs; 5.5 ± 1.2-fold) in the bone marrow with G-CSF treatment. To further assess the role of MDCs, we used transgenic mice expressing the diphtheria toxin receptor under the control of the CD11c promoter (CD11c-DTR) to conditionally ablate MDCs. To avoid systemic toxicity, we transplanted CD11c-DTR bone marrow into congenic wild type recipients prior to MDC ablation. The resulting bone marrow chimeras were treated with diphtheria toxin (DT; 400 ng per day for 6 days), which resulted in a 92% reduction in MDCs. Ablation of MDCs resulted in a significant increase in colony-forming cells in the blood and spleen (figure 1A). Moreover, MDC ablation significantly increased mobilization of colony-forming cells and c-Kit+lineage−Sca-1+ (KLS) cells by G-CSF (figures 1B and 1C). Taken together, these data suggest that myeloid dendritic cells, but not osteoclasts, contribute to HSPC mobilization by G-CSF. Figure 1. HSPC mobilization in CD11c-DTR mice. CD11c-DTR bone marrow chimeras were treated with diphtheria toxin (DT) alone, G-CSF alone, or DT plus G-CSF. The number of CFU-C (A & B) or KLS cells (C) in the blood and spleen are shown. Data represent the mean ± SEM of 10–11 mice pooled from two independent experiments. *p < 0.05; **p < 0.001; ***p < 0.0001. Figure 1. HSPC mobilization in CD11c-DTR mice. CD11c-DTR bone marrow chimeras were treated with diphtheria toxin (DT) alone, G-CSF alone, or DT plus G-CSF. The number of CFU-C (A & B) or KLS cells (C) in the blood and spleen are shown. Data represent the mean ± SEM of 10–11 mice pooled from two independent experiments. *p < 0.05; **p < 0.001; ***p < 0.0001. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 314 (6) ◽  
pp. L1010-L1025 ◽  
Author(s):  
Remo C. Russo ◽  
Benedetta Savino ◽  
Massimiliano Mirolo ◽  
Chiara Buracchi ◽  
Giovanni Germano ◽  
...  

Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize, and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases the levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. The purpose of the study was to investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras, and antibody-mediated leukocyte depletion. ACKR2 was upregulated acutely in response to bleomycin and normalized over time. ACKR2−/− mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (nonhematopoietic) cells but not on leukocytes. ACKR2−/− mice exhibited decreased expression of tissue-remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2−/− mice had early increased levels of CCL5, CCL12, CCL17, and IFNγ and an increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17-lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2−/− and CCR5−/− mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2−/− mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells, tuning the Th17 response that mediated pulmonary fibrosis triggered by bleomycin instillation.


1978 ◽  
Vol 147 (3) ◽  
pp. 882-896 ◽  
Author(s):  
R M Zinkernagel ◽  
G N Callahan ◽  
A Althage ◽  
S Cooper ◽  
P A Klein ◽  
...  

In the thymus, precursor T cells differentiate recognition structures for self that are specific for the H-2K, D, and I markers expressed by the thymic epithelium. Thus recognition of self-H-2 differentiates independently of the T cells H-2 type and independently of recognition of nonself antigen X. This is readily compatible with dual recognition by T cells but does not formally exclude a single recognition model. These conclusions derive from experiments with bone marrow and thymic chimeras. Irradiated mice reconstituted with bone marrow to form chimeras of (A X B)F1 leads to A type generate virus-specific cytotoxic T cells for infected targets A only. Therefore, the H-2 type of the host determines the H-2-restricted activity of killer T cells alone. In contrast, chimeras made by reconstituting irradiated A mice with adult spleen cells of (A X B)F1 origin generate virus-specific cytotoxic activity for infected A and B targets, suggesting that mature T cells do not change their self-specificity readily. (A X B)F1 leads to (A X C)F1 and (KAIA/DC) leads to (KAIA/DB) irradiation bone marrow chimeras responded against infected A but not B or C targets. This suggests that cytotoxicity is not generated against DC because it is abscent from the host's thymus epithelium and not against DB because it is not expressed by the reconstituting lymphoreticular system. (KBIB/DA) leads to (KCIC/DA) K, I incompatible, or completely H-2 incompatible A leads to B chimeras fail to generate any measurable virus specific cytotoxicity, indicating the necessity for I-specific helper T cells for the generation of killer T cells. Finally adult thymectomized, irradiated and bone marrow reconstituted (A X B)F1 mice, transplanted with an irradiated thymus of A origin, generate virus-specific cytotoxic T cells specific for infected A targets but not for B targets; this result formally demonstrates the crucial role of thymic epithelial cells in the differentiation of anti-self-H-2 specificities of T cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4478-4478
Author(s):  
Xuan Du ◽  
Xiuli Wu ◽  
Rui Li ◽  
Zhiping Fan ◽  
Yu Zhang ◽  
...  

Abstract Abstract 4478 Background and Objective Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is now applied widely for the treatment of hematological or non-hematological malignancies, aplastic anemia and hereditary diseases. Recently, a protocol for haploidentical allo-HSCT that combines granulocyte-colony stimulating factor (G-CSF) primed bone marrow (G-BM) and peripheral blood stem cells (G-PBSC) without in vitro T-cell depletion received great success. But the mechanism of G-CSF inducing immunotolerance in haploidentical-HSCT has not yet been clarified. Human leucocyte antigen G (HLA-G) is a nonclassical HLA class I molecule, the tolerogenic role of HLA-G is highly supported in pregnancy immunization, tumor immune escape and organ transplant. Because HLA-G closely related to immunotolerance, we investigate the role of HLA-G in inducing immune tolerance after allo-HSCT and the effects of G-CSF on the expression and secretion level of HLA-G. Methods Flow cytometry was used to detect the expression of membrane-bound HLA-G (mHLA-G) on donor peripheral blood cells (PBC) or bone marrow (BM) cells. The levels of soluble HLA-G (sHLA-G) in the plasma and bone marrow fluid were determined by enzyme-linked immunosorbent assay (ELISA). In vitro, the expression and secretion level of HLA-G in bone marrow mononuclear cells (BMMCs) and peripheral blood mononuclear cells (PBMCs) after G-CSF stimulated were detected by flow cytometry and ELISA, respectively; Separated T lymphocytes which expressed high level of HLA-G were cultured with allogeneic T lymphocytes and relative response index (RPI) was measured with MTT assay; Furthermore, separated T lymphocytes were cultured with allogeneic BMMCs and the levels of IFN-γ and IL-10 in culture supernatant were determined by ELISA. Results The mean level of mHLA-G after G-CSF mobilization in the PBC or BM cells was significantly higher than that before G-CSF mobilization (P<0.05). The level of mHLA-G or sHLA-G in BM cells was higher than that in PBC after G-CSF mobilization (P<0.05). The level of mHLA-G or sHLA-G in BMMCs or PBSCs which were stimulated by G-CSF was higher than that of the controls (P<0.05), and the level of HLA-G in BMMCs was higher than that in PBSCs. HLA-G predominant expressed in CD3+ T cells; The results of allogeneic mixed lymphocyte culture revealed that immunological function of the separated T lymphocytes which expressed high level of HLA-G was inhibited (RPI: 54.3%). The separated T lymphocytes co-cultured with allogeneic BMMCs, the levels of IFN-γ and IL-10 in culture supernatant were significantly higher than the controls (P<0.05). Conclusions HLA-G is rich in G-BM that might be interpret G-BM could induce better immunotolerance than G-PBSC. The G-CSF could regulate HLA-G expression and secretion directly. The mechanism of G-CSF inducing immunotolerance might be related to the inhibition of allogeneic T cell reactivity and the increase of IFN-γ and IL-10 secretion through HLA-G. Disclosures: No relevant conflicts of interest to declare.


1978 ◽  
Vol 148 (3) ◽  
pp. 727-745 ◽  
Author(s):  
D H Katz ◽  
B J Skidmore ◽  
L R Katz ◽  
C A Bogowitz

The concept of adaptive (selective) differentiation preducts that early differentiation of lymphocytes is conditioned by the environment in which such differentiation takes place. These processes appear to involve selection of lymphocytes according to their self-recognition between interacting lymphocytes is, at least in part, controlled by major histocompatibility complex-linked genes, then adaptive differentiation is also controlled by these genes. In these studies, we have tested the capacities of helper T lymphocytes and hapten-specific B lymphocytes primed in the environments of various combinations of bone marrow chimeras prepared between two parental strains (i.e. A/J and BALB/c) and their corresponding F1 hybrid (CAF1) to interact with primed B and T lymphocytes derived from conventional parent and F1 donors as well as all of the corresponding bone marrow chimera combinations. The results demonstrate clearly that (a) F1 transplanted to F1 chimeric lymphocytes display no restriction in terms of cooperative activity with all of the various partner cell combinations; (b) parent transplanted to F1 chimeric lymphocytes manifest effective cooperative activity only for partner cells from F) or parental donors corresponding to the haplotype of the original bone marrow donor, thereby behaving phenotypically just like conventional parental lymphocytes; and (c) F1 transplanted to parent chimeric lymphocytes display restricted haplotype preference in cooperating best with partner lymphocytes sharing the H-2 haplotype, either entirely or codomimantly, of the parental chimeric host. The implications of these findings for understanding certain controlling mechanisms for lymphocyte differentiation are discussed.


Sign in / Sign up

Export Citation Format

Share Document