A Comparison of SEASAT-Derived Wave Height With Surface Data

1981 ◽  
pp. 637-643
Author(s):  
P. Queffeulou ◽  
A. Braun ◽  
C. Brossier
Keyword(s):  
2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Author(s):  
C. Jatu

Mud volcanoes in Grobogan are referred as the Grobogan Mud Volcanoes Complex in Central Java where there is evidence of oil seepages. This comprehensive research is to determine the characteristics and hydrocarbon potential of the mud volcanoes in the Central Java region as a new opportunity for hydrocarbon exploration. The Grobogan Mud Volcano Complex consists of eight mud volcanoes that have its characteristics based on the study used the geological surface data and seismic literature as supporting data on eight mud volcanoes. The determination of geological surface characteristics is based on geomorphological analysis, laboratory analysis such as petrography, natural gas geochemistry, water analysis, mud geochemical analysis and biostratigraphy. Surface data and subsurface data are correlated, interpreted, and validated to make mud volcano system model. The purpose of making the mud volcanoes system model is to identify the hydrocarbon potential in Grobogan. This research proved that each of the Grobogan Mud Volcanoes has different morphological forms. Grobogan Mud Volcanoes materials are including muds, rock fragments, gas, and water content with different elemental values. Based on this research result, there are four mud volcano systems models in Central Java, they are Bledug Kuwu, Maesan, Cungkrik, and Crewek type. The source of the mud is from Ngimbang and Tawun Formation (Middle Eocene to Early Miocene) from biostratigraphy data and it been correlated with seismic data. Grobogan Mud Volcanoes have potential hydrocarbons with type III kerogen of organic matter (gas) and immature to early mature level based on TOC vs HI cross plot. The main product are thermogenic gas and some oil in relatively small quantities. Water analysis shows that it has mature sodium chloride water. This analysis also shows the location was formed within formations that are deposited in a marine environment with high salinity. Research of mud volcanos is rarely done in general. However, this comprehensive research shows the mud volcano has promising hydrocarbon potential and is a new perspective on hydrocarbon exploration.


1985 ◽  
Author(s):  
P. C. Stein ◽  
W. L. White

Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


1992 ◽  
Vol 25 (9) ◽  
pp. 211-216
Author(s):  
A. Akyarli ◽  
Y. Arisoy

As the wave forces are the function of the wave height, period and the angle between the incoming wave direction and the axis of the discharge pipeline, the resultant wave force is directly related to the alignment of the pipeline. In this paper, a method is explained to determine an optimum pipeline route for which the resultant wave force becomes minimum and hence, the cost of the constructive measures may decrease. Also, the application of this method is submitted through a case study.


Sign in / Sign up

Export Citation Format

Share Document