The Response of a Low Solidity Symmetric Airfoil Cascade to Compressor Wake and Linear Theory Gusts

Author(s):  
Gregory H. Henderson ◽  
Sanford Fleeter
1993 ◽  
Vol 115 (4) ◽  
pp. 751-759 ◽  
Author(s):  
G. H. Henderson ◽  
S. Fleeter

The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low-solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory vortical gust, as was the case for the perforated-plate wake generators, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. In contrast, when the forcing function did not exhibit linear-theory vortical gust characteristics, i.e., for the airfoil wake generators, the resulting unsteady aerodynamic responses of the downstream stators were much more complex and correlated poorly with the linear-theory gust predictions. Thus, this investigation has quantitatively shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.


Author(s):  
Gregory H. Henderson ◽  
Sanford Fleeter

The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory gust, as was the case for the perforated-plate wake generators, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. In contrast, when the forcing function did not exhibit linear-theory gust characteristics, i.e., for the airfoil wake generators, the resulting unsteady aerodynamic response of the downstream stators were much more complex and correlated poorly with the linear-theory gust predictions. Thus, this investigation has quantitatively shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.


1991 ◽  
Vol 161 (9) ◽  
pp. 201-209 ◽  
Author(s):  
Polina S. Landa ◽  
V.F. Marchenko

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 80
Author(s):  
Yuria Okagaki ◽  
Taisuke Yonomoto ◽  
Masahiro Ishigaki ◽  
Yoshiyasu Hirose

Many thermohydraulic issues about the safety of light water reactors are related to complicated two-phase flow phenomena. In these phenomena, computational fluid dynamics (CFD) analysis using the volume of fluid (VOF) method causes numerical diffusion generated by the first-order upwind scheme used in the convection term of the volume fraction equation. Thus, in this study, we focused on an interface compression (IC) method for such a VOF approach; this technique prevents numerical diffusion issues and maintains boundedness and conservation with negative diffusion. First, on a sufficiently high mesh resolution and without the IC method, the validation process was considered by comparing the amplitude growth of the interfacial wave between a two-dimensional gas sheet and a quiescent liquid using the linear theory. The disturbance growth rates were consistent with the linear theory, and the validation process was considered appropriate. Then, this validation process confirmed the effects of the IC method on numerical diffusion, and we derived the optimum value of the IC coefficient, which is the parameter that controls the numerical diffusion.


2019 ◽  
Vol 4 (7) ◽  
Author(s):  
Bingrui Xu ◽  
Minhao Li ◽  
Feng Wang ◽  
Steven G. Johnson ◽  
Yoel Fink ◽  
...  

1994 ◽  
Vol 04 (05) ◽  
pp. 1319-1328 ◽  
Author(s):  
WILLIAM B. ZIMMERMAN

The linear stability theory of Tan & Homsy [1986] is extended to include the effects of weak nonlinear coupling between mass flux and viscous effects when the viscous fingers grow from a slowly diffusing, nearly flat displacement front. A regular perturbation scheme combined with a similarity-separation of variables technique leads to a Landau equation for the amplitude of the disturbance. The Landau constant has a simple pole for a given wavenumber within the linear theory cutoff wavenumber for growth. An argument is given that this pole leads to pairing of fingers while the instability remains small. Comparison of the length scale of the pole of the Landau constant with experimental measurements of finger scale shows good agreement where plausibly finite-amplitude effects might come into play, but with the linear theory otherwise.


1981 ◽  
Vol 25 (1) ◽  
pp. 133-143 ◽  
Author(s):  
T. H. Jensen ◽  
F. W. McClain ◽  
H. Grad

Heating of a doublet plasma by driving an axisymmetric mode at low frequency may be an attractive means for auxiliary heating. The attractiveness of the method stems from (1) the low technology required for low-frequency power sources, (2) the fact that the field-shaping coils required for doublets may also be used as the antennae for transmitting the power, (3) the possibility of transmitting the power through a resistive vacuum wall, (4) the insensitivity to the plasma temperature and density and (5) the relative simplicity of the physical model. The utility of the concept depends on the existence of a special axisymmetric eigenmode in the resistive M.HD approximation which is used. This mode has nodes through the elliptic axes of the doublet equilibrium and an antinode at the hyperbolic axis. It is remarkable that the dissipation per cycle of this mode remains large at low plasma resistivity. This paper describes a linear theory for such heating.


Sign in / Sign up

Export Citation Format

Share Document