scholarly journals Numerical Study on an Interface Compression Method for the Volume of Fluid Approach

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 80
Author(s):  
Yuria Okagaki ◽  
Taisuke Yonomoto ◽  
Masahiro Ishigaki ◽  
Yoshiyasu Hirose

Many thermohydraulic issues about the safety of light water reactors are related to complicated two-phase flow phenomena. In these phenomena, computational fluid dynamics (CFD) analysis using the volume of fluid (VOF) method causes numerical diffusion generated by the first-order upwind scheme used in the convection term of the volume fraction equation. Thus, in this study, we focused on an interface compression (IC) method for such a VOF approach; this technique prevents numerical diffusion issues and maintains boundedness and conservation with negative diffusion. First, on a sufficiently high mesh resolution and without the IC method, the validation process was considered by comparing the amplitude growth of the interfacial wave between a two-dimensional gas sheet and a quiescent liquid using the linear theory. The disturbance growth rates were consistent with the linear theory, and the validation process was considered appropriate. Then, this validation process confirmed the effects of the IC method on numerical diffusion, and we derived the optimum value of the IC coefficient, which is the parameter that controls the numerical diffusion.

Author(s):  
Thomas D. Foust ◽  
Kurt D. Hamman ◽  
Brent A. Detering

The performance and capacity of Kraft recovery boilers is sensitive to black liquor velocity, droplet size and flow distribution in the furnace. Studies have shown that controlling droplet size and flow distribution improves boiler efficiency while allowing increased flight drying and devolatilization, and decreased carryover. The purpose of this study is to develop a robust two-phase numerical model to predict black liquor splashplate nozzle spray characteristics. A three-dimensional time dependent numerical study of black liquor sheet formation and sheet breakup is described. The volume of fluid (VOF) model is used to simulate flow through the splashplate nozzle up to initial sheet breakup and droplet formation. The VOF model solves the conservation equations of volume fraction and momentum utilizing the finite volume technique. Black liquor velocity, droplet size and flow distribution over a range of operating parameters are simulated using scaled physical models of splashplate nozzles. The VOF model is compared to results from a flow visualization experiment and experimental data found in the literature. The details of the simulation and experimental results are presented.


2021 ◽  
Vol 11 (6) ◽  
pp. 7841-7845
Author(s):  
S. Tomescu ◽  
I. O. Bucur

In this research paper, a numerical study regarding gas-oil separation is presented. Employing the geometry of a classic separator used by the NRDI for Gas Turbines COMOTI and a Computer-Aided Design (CAD) software, the computational domain was defined. To perform the Computational Fluid Dynamics (CFD) investigation, the mesh was created with the ANSYS Meshing tool, and the ANSYS CFX was employed as a solver. The computational domain was split into 5 subdomains, 3 were fluid and 2 were defined as porous media. The volume porosity, loss model, and permeability were set up. In terms of turbulence flow, the standard k–ε model was adopted. The results of the numerical calculations in terms of oil volume fraction and streamline profiles were used to analyze the separator configuration. The results show that the numerical investigation with the VOF (Volume of Fluid Method) - CFD model is capable of analyzing the performance of a two-phase separator equipped with two demisters-porous media.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Amin Kashani ◽  
Davood Jalali-vahid ◽  
Siamak Hossainpour

Laminar forced convection of a nanofluid consisting of water and Al2O3 in a horizontal annulus has been studied numerically. Two-phase mixture model has been used to investigate thermal behaviors of the nanofluid over constant temperature thermal boundary condition and with different volume concentration of nanoparticles. Comparisons with previously published experimental and analytical works on flow behavior in horizontal annulus show good agreements between the results as volume fraction is zero. In general convective heat transfer coefficient increases with nanoparticle concentration. ABSTRAK: Kertaskerja ini mengkaji secara numerik olakan paksa bendalir lamina yang menganduangi air dan Al2O3 didalam anulus mendatar. Model campuran dua fasa digunakan bagi mengkaji tingkah laku haba bendalir nano pada keadaan suhu malar dengan kepekatan nanopartikel berbeza. Perbandingan dengan karya eksperimen dan analitikal yang telah diterbitkan menunjukkan bahawa kelakuan aliran didalm anulus mendatar adalah baik apabila pecahan isipadu adalah sifar. Pada amnya, pekali pemindahan haba olakan meningkat dengan kepekatan nanopartikel. KEYWORDS: nanofluid; volume concentration; heat transfer enhancement; laminar flow convection; annulus


Author(s):  
Chenfei Wang ◽  
Dongdong Gao ◽  
Minli Bai ◽  
Peng Wang ◽  
Yubai Li

Abstract Nanofluids is reported to significantly enhance heat transfer but with little cost of pressure loss. To further the enhancement of heat transfer using Fe3O4 nanofluids, a magnetic field is employed to control the trajectory of Fe3O4 nanoparticles. A numerical study is conducted with commercial soft ANSYS FLUENT and the simulations are done with a two-phase flow approach named Euler-Lagrange. By comparing heat transfer of laminar flow in a horizontal tube with magnetic field or not, various volume fraction (0.5%/2%) and Reynolds numbers (Re = 200–1000) are considered. Results show that magnetic field contributes an average 4% promotion in convective heat transfer coefficients compared with the condition of no magnet. The mechanism of the enhancement of heat transfer with magnetic field is explored based on the analysis of velocity field. Fe3O4 Nanoparticles move up and down under the magnetic force, and convective heat transfer is enhanced because of the disturbance of the Fe3O4 nanoparticles. Slip flow between the base fluid and nanoparticles also contributes to the enhancement of heat transfer.


2011 ◽  
Vol 110-116 ◽  
pp. 3657-3662
Author(s):  
S. Alikhani ◽  
A. Behzadmehr ◽  
S. Mirmasoumi

Fully developed laminar mixed convection of a nanofluid (water/Al2O3) in a horizontal curved tube is numerically investigated. Three-dimensional elliptic governing equations have been solved to show how nanoparticle concentration affects on thermal and hydrodynamic parameters while these parameters are impressed by centrifugal and buoyancy forces under constant mass flow rate and heat flux. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Results which are obtained using the two – phase mixture model indicate that adding the nanoparticles causes changes in the properties of nanofluid and finally increases the temperature of the flow. Furthermore, increasing nanoparticles volume fraction at first augments the heat transfer coefficient of nanofluid and then, for higher concentration of particles, decreases this thermal parameter of nanofluid.


Author(s):  
Hua Shan ◽  
Sung-Eun Kim

In solving naval hydrodynamics problems using computational fluid dynamics (CFD), the moving free surface between air and water introduces extra difficulties to numerical methods, since the material property jumps across the interface and the time-dependent free surface position becomes part of the solution. Engineering applications often require a flexible and robust solver for incompressible multi-phase viscous flows with the capability of capturing the interface. In the volume of fluid (VOF) method, the interface is captured by directly solving the convection transport equation of volume fraction. In this case, the numerical dissipation of the advection scheme smears the sharp interface and the numerical dispersion causes unphysical oscillations near the interface. Utilizing the guidance of boundedness criteria, many limited higher-order non-liner advection schemes have been developed in an attempt to balance numerical dissipation and dispersion. Though it is well-known that these non-linear advection schemes can lead to solutions combining boundednesss and accuracy, users are often overwhelmed by the wide variety of available schemes. Also, these schemes are developed with the assumption of a uniform Cartesian-type mesh. Thus, a thorough investigation and comparison of the performance of these interface-capturing advection schemes are necessary, especially for naval hydrodynamics problems solved on unstructured meshes. In this study, a systematic comparison and evaluation of several existing and new bounded, higher-order advection schemes has been conducted within the framework of NavyFOAM, which is developed based on OpenFOAM — an object orientated C++ toolbox for the customization and extension of numerical solvers for continuum mechanics problems, including CFD, where the governing equations are discretized using the cell-centered finite volume method on unstructured mesh. The flexible infrastructure of the code enables us to implement and test the selected advection schemes very quickly. The test cases include advection of hollow cylinders, Zalesak’s rotating slotted disk, traveling solitary wave, dam breaking problem.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hamid Shafiee ◽  
Elaheh NikzadehAbbasi ◽  
Majid Soltani

The magnetic field can act as a suitable control parameter for heat transfer and fluid flow. It can also be used to maximize thermodynamic efficiency in a variety of fields. Nanofluids and porous media are common methods to increase heat transfer. In addition to improving heat transfer, porous media can increase pressure drop. This research is a computational simulation of the impacts of a magnetic field induced into a cylinder in a porous medium for a volume fraction of 0.2 water/Al2O3 nanofluid with a diameter of 10 μm inside the cylinder. For a wide variety of controlling parameters, simulations have been made. The fluid flow in the porous medium is explained using the Darcy-Brinkman-Forchheimer equation, and the nanofluid flow is represented utilizing a two-phase mixed approach as a two-phase flow. In addition, simulations were run in a slow flow state using the finite volume method. The mean Nusselt number and performance evaluation criteria (PEC) were studied for different Darcy and Hartmann numbers. The results show that the amount of heat transfer coefficient increases with increasing the number of Hartmann and Darcy. In addition, the composition of the nanofluid in the base fluid enhanced the PEC in all instances. Furthermore, the PEC has gained its highest value at the conditions relating to the permeable porous medium.


Author(s):  
Peng Wang ◽  
Shouqi Yuan ◽  
Xiuli Wang ◽  
Guidong Li ◽  
Banglun Zhou ◽  
...  

In this paper, the unsteady pressure field and head-drop phenomenon caused by one of the most dangerous accidents in reactor plants known as Loss of Coolant Accident (LOCA) in its worse condition called small LOCA have been investigated numerically by computational fluid dynamics (CFD) in a nuclear reactor cooling pump. Five computational models with different blades had been calculated using Eulerian-Eulerian two fluid models using a multiphase approach. Simulation results show increasing gas volume fraction results in a sharp decline of the head pressure and pump efficiencies for each of 5 kinds of pumps modeled. This is especially evident for both the head pressure of impeller types C and impeller E. Here only have operating at half (58m and 54.9m)of the design condition when the gas volume fraction is 25%. The analysis of inner flow field of the five model pumps shown that the lower pressure area appeared at the inlet and outlet of the impeller as well as a small part distribution at the inlet of the diffuser, which is the main reason made the gas bubbles tend to concentrate at the impeller eye on the suction surface, the distribution of two phases appeared by non-linear increase and random located in whole passages. The experimental and simulation results are compared and are in good agreement with values obtained for the global performance at lower gas contents (below20%). When the gas contents increases to 25%, the bubbles occupy the passages, which effectively causes unsteady flow in the gas phase cannot be neglected for accurately predicting the inner flow of the pump. These results imply that this numerical method is suitable for the two-phase flow under certain gas contents (below 20%) in the reactor cooling pump.


Author(s):  
Mohamed H Mansour ◽  
Ali A Zahran ◽  
Lotfy H Rabie ◽  
Ibrahim M Shabaka

The horizontal bubbly two-phase flow is preferably used in various industrial applications because it provides high interfacial areas which enhance the heat and mass transfer. In the present research, the phase distribution of controlled air-water flow in a horizontal acrylic round pipe with 60 mm inside diameter (D) has been investigated experimentally and modeled numerically. The modeled differential pressure and the mixture velocity profile at a distance of 33D from the mixing section (fully developed region) are computed numerically and compared with those obtained experimentally from the two-phase flow system established and maintained at the National Institute of Standards (NIS-Egypt). Furthermore, the numerical and the experimental data have been compared with previous correlations and models. Reasonable quantitative agreement between all data is found. An electronic device based on Arduino Uno board was designed and used with careful data manipulation for measuring the slug bubble velocity. The results point out that the air volume fraction has a maximum value at the upper pipe wall as the gas bubbles tend to migrate to the upper wall. A new correlation was obtained for bubble migration length to the upper pipe wall which is very important in chemical industrial processes and other engineering application.


Sign in / Sign up

Export Citation Format

Share Document