Lecture Notes in Electrical Engineering: Magnetic Field Parameter Calculation of Permanent Magnet Reciprocating Generator

Author(s):  
Yufeng Lu ◽  
Dawei Meng ◽  
Yongming Xu ◽  
Xifeng Wang
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Rizwan Akhtar ◽  
Zhu Zhiyu ◽  
Muhammad Umar ◽  
Ali Imran ◽  
...  

In this study, an attempt is made to explore the two-phase Casson nanofluid passing through a stretching sheet along a permeable surface with the effects of chemical reactions and gyrotactic microorganisms. By utilizing the strength of similarity transforms the governing PDEs are transformed into set of ODEs. The resulting equations are handled by using a proficient numerical scheme known as the shooting technique. Authenticity of numerical outcomes is established by comparing the achieved results with the MATLAB built-in solver bvp4c. The numerical outcomes for the reduced Nusselt number and Sherwood number are exhibited in the tabular form, while the variations of some crucial physical parameters on the velocity, temperature, and concentration profiles are demonstrated graphically. It is observed that Local Nusselt number rises with the enhancement in the magnetic field parameter, the porous media parameter, and the chemical reactions, while magnetic field parameter along with porous media parameter retards the velocity profile.


1989 ◽  
Vol 67 (10) ◽  
pp. 971-973
Author(s):  
K. D. Krori ◽  
J. C. Sarmah

In this paper, we present a study of the stable polar trajectories ([Formula: see text] = constant plane) of neutral test particles around a Schwarzschild black hole embedded in a magnetic field. We also show how the nature of these trajectories changes with the variation in the angular momentum of the test particle and the magnetic field parameter.


2013 ◽  
Vol 18 (2) ◽  
pp. 599-608
Author(s):  
R. Muthucumaraswamy ◽  
V. Visalakshi

Thermal radiation effects on an unsteady free convective flow of a viscous incompressible flow of a past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence magnetic field are considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is also raised to Cʹw . An exact solution to the dimensionless governing equations is obtained by the Laplace transform method, when the plate is exponentially accelerated with a velocity u= u0 exp(aʹtʹ) in its own plane against gravitational field. The effects of velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to a or t .


2013 ◽  
Vol 18 (1) ◽  
pp. 259-267 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
V. Valliammal

An exact solution of an unsteady flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence of a transverse magnetic field has been studied. The plate temperature is raised to Tw and the species concentration level near the plate is also made to rise Cʹw . The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and a. It is observed that the velocity decreases with increasing the magnetic field parameter.


2011 ◽  
Vol 110-116 ◽  
pp. 2228-2233 ◽  
Author(s):  
Narahari Marneni

The effect of thermal radiation on unsteady magnetohydrodynamic free convection flow of an optically thin gray gas past an infinite inclined plate with constant temperature has been investigated. The governing coupled partial differential equations are solved analytically using the Laplace transform technique. The dimensionless velocity and temperature profiles are shown in graphs and the numerical values of the non-dimensional skin-friction and Nusselt number are presented in tables. The influence of the system parameters such asPrandtl number, inclination angle, magnetic field parameter, Grashof number, radiation parameter and time on flow fields have been discussed in detail. The results indicate that the inclination angle, magnetic field parameter and radiation parameter effects were to decrease the fluid velocity along an inclined plate.


2013 ◽  
Vol 18 (3) ◽  
pp. 727-737
Author(s):  
R. Muthucumaraswamy ◽  
E. Geetha

Abstract An exact solution of first order chemical reaction effects on a radiative flow past a linearly accelerated infinite isothermal vertical plate with variable mass diffusion, under the action of a transversely applied magnetic field has been presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C'w linearly with time. The dimensionless governing equations are tackled using the Laplace-transform technique. The velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, radiation parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to the chemical reaction parameter


2013 ◽  
Vol 18 (4) ◽  
pp. 1087-1097
Author(s):  
R. Muthucumaraswamy ◽  
N. Dhanasekar ◽  
G. Easwara Prasad

Abstract An exact analysis of rotation effects on an unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of a transversely applied magnetic field is presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C’w. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing values of the magnetic field parameter or rotation parameter Ω.


2006 ◽  
Vol 33 (1) ◽  
pp. 17-29 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
B. Janakiraman

An analysis is performed to study the effects of thermal radiation on unsteady free convective flow over a moving vertical plate with mass transfer in the presence of magnetic field. The fluid considered here is a gray, absorbing-emitting radiation but a non- scattering medium. The plate temperature is raised to T 0 and the concentration level near the plate is also raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, temperature and concentration are studied for different parameters like the magnetic field parameter, radiation parameter, thermal Grashof number, mass Grashof number and time. It is observed that the velocity decreases with increasing magnetic field parameter or radiation parameter. .


Sign in / Sign up

Export Citation Format

Share Document