One-Dimensional Quantum Mechanics: Scattering by a Potential

Author(s):  
Siegmund Brandt ◽  
Hans Dieter Dahmen
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yolanda Lozano ◽  
Carlos Nunez ◽  
Anayeli Ramirez

Abstract We present a new infinite family of Type IIB supergravity solutions preserving eight supercharges. The structure of the space is AdS2 × S2 × CY2 × S1 fibered over an interval. These solutions can be related through double analytical continuations with those recently constructed in [1]. Both types of solutions are however dual to very different superconformal quantum mechanics. We show that our solutions fit locally in the class of AdS2 × S2 × CY2 solutions fibered over a 2d Riemann surface Σ constructed by Chiodaroli, Gutperle and Krym, in the absence of D3 and D7 brane sources. We compare our solutions to the global solutions constructed by Chiodaroli, D’Hoker and Gutperle for Σ an annulus. We also construct a cohomogeneity-two family of solutions using non-Abelian T-duality. Finally, we relate the holographic central charge of our one dimensional system to a combination of electric and magnetic fluxes. We propose an extremisation principle for the central charge from a functional constructed out of the RR fluxes.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2012 ◽  
Vol 127 (3) ◽  
Author(s):  
Avik Dutt ◽  
Trisha Nath ◽  
Sayan Kar ◽  
Rajesh Parwani

1997 ◽  
Vol 12 (20) ◽  
pp. 1455-1463 ◽  
Author(s):  
G. S. Djordjević ◽  
B. Dragovich

The Feynman path integral in p-adic quantum mechanics is considered. The probability amplitude [Formula: see text] for one-dimensional systems with quadratic actions is calculated in an exact form, which is the same as that in ordinary quantum mechanics.


2017 ◽  
Vol 32 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Ilmar Gahramanov ◽  
Kemal Tezgin

In this work, we explicitly show resurgence relations between perturbative and one instanton sectors of the resonance energy levels for cubic and quartic anharmonic potentials in one-dimensional quantum mechanics. Both systems satisfy the Dunne–Ünsal relation and hence we are able to derive one-instanton nonperturbative contributions with the fluctuation terms to the energy merely from the perturbative data. We confirm our results with previous results obtained in the literature.


2011 ◽  
Vol 2011 ◽  
pp. 1-45 ◽  
Author(s):  
M. G. Faux ◽  
K. M. Iga ◽  
G. D. Landweber

We explain how the representation theory associated with supersymmetry in diverse dimensions is encoded within the representation theory of supersymmetry in one time-like dimension. This is enabled by algebraic criteria, derived, exhibited, and utilized in this paper, which indicate which subset of one-dimensional supersymmetric models describes “shadows” of higher-dimensional models. This formalism delineates that minority of one-dimensional supersymmetric models which can “enhance” to accommodate extra dimensions. As a consistency test, we use our formalism to reproduce well-known conclusions about supersymmetric field theories using one-dimensional reasoning exclusively. And we introduce the notion of “phantoms” which usefully accommodate higher-dimensional gauge invariance in the context of shadow multiplets in supersymmetric quantum mechanics.


2018 ◽  
Vol 33 (26) ◽  
pp. 1850150 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

Based on the one-dimensional quantum mechanics on (anti)-de Sitter background [W. S. Chung and H. Hassanabadi, Mod. Phys. Lett. A 32, 26 (2107)], we discuss the Ramsauer–Townsend effect. We also formulate the WKB method for the quantum mechanics on (anti)-de Sitter background to discuss the energy level of the quantum harmonic oscillator and quantum bouncer.


2016 ◽  
Vol 30 (03) ◽  
pp. 1650003 ◽  
Author(s):  
Aleksandar Demić ◽  
Vitomir Milanović ◽  
Jelena Radovanović ◽  
Milenko Musić

Bound states degenerated in energy (and differing in parity) may form in one-dimensional quantum mechanics if the potential is unbounded from below. We focus on symmetric potential and present quasi-exactly solvable (QES) model based on WKB method. The application of this method is limited on slow-changing potentials. We consider the overlap integral of WKB wave functions [Formula: see text] and [Formula: see text] which correspond to energies [Formula: see text] and [Formula: see text], and by setting [Formula: see text], we determine the type of spectrum depending on parameter [Formula: see text] which arises from this method. For finite value [Formula: see text], we show that the entire spectrum will consist of degenerated bound states.


Sign in / Sign up

Export Citation Format

Share Document