Engineered Geothermal Systems engineered geothermal system (EGS) , Development engineered geothermal system (EGS) definition and Sustainability Engineered Geothermal Systems Sustainability of

2013 ◽  
pp. 714-727
Author(s):  
Roy Baria ◽  
L. Mortimer ◽  
G. Beardsmore
2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Mengying Li ◽  
Noam Lior

Analyses of fracturing and thermal performance of fractured reservoirs in engineered geothermal system (EGS) are extended from a depth of 5 km to 10 km, and models for flow and heat transfer in EGS are improved. Effects of the geofluid flow direction choice, distance between fractures, fracture width, permeability, radius, and number of fractures, on reservoir heat drawdown time are computed. The number of fractures and fracture radius for desired reservoir thermal drawdown rates are recommended. A simplified model for reservoir hydraulic fracturing energy consumption is developed, indicating it to be 51.8–99.6 MJ per m3 fracture for depths of 5–10 km.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Máté Osvald ◽  
Gergely Maróti ◽  
Bernadett Pap ◽  
János Szanyi

Reinjection of heat-depleted thermal water has long been in the center of scientific interest in Hungary regarding around 1000 operating thermal wells. While the physical and chemical aspects of reinjection have partly been answered in the past years, the effects of biological processes are still less known. We carried out our investigations in the surface elements of the Hódmezővásárhely geothermal system which is one of the oldest operating geothermal systems in Hungary. About one-third of the used geothermal water has been reinjected since 1998 by two reinjection wells at the end of the thermal loops. During the operation, plugging of the surface system was experienced within a few-day-long period, due to biological processes. The goal of our research was to find the dominant species of the microbial flora and to make a proposal to avoid further bacterial problems. We found that the reinjected, therefore the produced, water’s chemical oxygen demand, phenol index, and BTEX composition basically determine the appearing flora on the surface. When the concentration of these compounds in the thermal water is significant and residence time is long enough in the buffer tank, certain bacteria can be much more dominant than others, thus able to form a biofilm which plugs the surface equipment much more than it is expected.


2018 ◽  
Vol 70 ◽  
pp. 01012
Author(s):  
Dominika Matuszewska ◽  
Marta Kuta ◽  
Jan Górski

This paper details the development of a systematic methodology to integrated life cycle assessment (LCA) with thermo-economic models and to thereby identify the optimal exploitation schemes of geothermal resources. Overall geothermal systems consist of a superstructure of geothermal exploitable resources, a superstructure of conversion technology and multiple demand profiles for Swiss city. In this paper, an enhanced geothermal system has been chosen as exploitable resources. The energy conversion technology used in modelling is an organic Rankine cycle, which can be used to supply heat and electricity. In the Swiss case four demand profiles periods are considered: summer, interseason, winter and extreme winter, the city Nyon serving for the example case study. The multi-objective optimization system, that uses an evolutionary algorithm, is employed to determine the optimal scheme for some of the prepared models, with exergy efficiency and environmental impact as objectives.


2021 ◽  
Author(s):  
Jennifer Cardoe ◽  
Gunnar Nygaard ◽  
Christopher Lane ◽  
Tero Saarno ◽  
Marc Bird

Abstract An Engineered Geothermal System (EGS) pilot project was commissioned to prove the economic viability of an industrial scale geothermal heat plant in Finland. The project aims to generate 40 MW of emission free heat energy, supplying up to 10% of the city of Espoo’s district heating needs. Two wells of 6400 m MD and 6213 m MD (measured depth) were drilled through formations of hard, abrasive granitic gneiss with maximum measured 560 MPa UCS (unconfined compressive strength). Typical dull conditions of lost and worn cutting structure and gauge diameter wear of between 3/16-in to ¼-in contributed to excessive torque, stuck incidences, low rate of penetration (ROP) and difficulties achieving build rate. To address these drilling challenges, this paper explores the interplay between new cemented carbide compact technology, drill bit design, and drilling parameter road mapping. The directional section of the first well was drilled with an average ROP below 2 m/hr and run length averaging 56 m per bit. The well took 246 drilling days and 44 BHAs (bottom hole assemblies) to achieve TD (total depth). Between the first and second well an application specific drill bit design package and step-wise parameter program were implemented. Design enhancements included improved gauge protection, bit hydraulics for minimizing cone erosion and subsequent TCI (tungsten carbide insert) compact loss. Novel hybrid TCI materials technology was introduced having a 100% improvement in wear resistance and durability as compared with conventional grades, to drill these hard and abrasive granitic formations. New BHAs and drilling plan were selected based on the bit design selection to reduce wear on BHA components, improve directional control and reducing drilling dysfunctions. Once these factors were under control, a low risk approach to extending the bit revolution limits (krev) for the roller cone sealed bearings could be implemented based on downhole parameters and previous bit dulls, leading to longer run lengths. The combination of bit design and material enhancements with a properly selected BHA and drill plan increased run lengths and ROP. The second well’s 8.5-in directional section was drilled with a 13% increase in average ROP and a 69% increase in average run length without exceeding krev limits. Well on well, a 77 day reduction in AFE (authorization for expenditure) was realized. We demonstrated the combination of oil and gas bit and BHA design, drilling plan, and new cutting material capabilities can reduce EGS well construction costs in order to make these renewable energy sources economical.


2021 ◽  
Author(s):  
Maren Brehme ◽  
Martin O Saar ◽  
Evert Slob ◽  
Paola Bombarda ◽  
Hansruedi Maurer ◽  
...  

<p>How to operate a geothermal system in the most efficient and safe manner? This is the most important and urgent question after a geothermal resource has been identified. The recently funded Innovative Training Network ‘EASYGO‘ will answer that question from different perspectives and give high-level training for early stage researchers (ESR; here PhD candidates) in geothermal operations.</p><p>Tackling the challenges of sustainable geothermal operations requires an interdisciplinary and intersectoral approach. To achieve the main objective, researchers will work on the whole chain of geothermal operations, from production to power-plant engineering to injection. They will develop novel monitoring concepts, perform real-time simulations, develop system components, assess novel concepts for operations and test operational parameters at the field scale. The major strength and originality of the programme is that it is developed around large-scale infrastructure. Researchers will have access to the infrastructure in all countries for testing equipment and doing real-time measurements.</p><p>EASYGO graduates will be a new generation of multidisciplinary experts in geothermal operations, trained to achieve standardised efficient and safe operations of geothermal systems to enable the ambitious international expansion plans. The mobility plan of EASYGO envisages each ESR to have at least one academic secondment and one industrial secondment.</p><p>EASYGO consists of an intersectoral team of experts from academic and non-academic institutions. All academic participants are members of the IDEA League, a strategic alliance of leading European universities of technology. The members of the IDEA League with a strong research profile in geothermal energy, TU Delft (The Netherlands), RWTH Aachen (Germany), ETH Zurich (Switzerland) and Politecnico di Milano (Italy), constitute the academic consortium of EASYGO. Additionally, ten industry partners from all countries drive the research from an applied point of view. Our ambition is to contribute to making Europe a world leader in geothermal science, operational technology and education, thereby accelerating the energy transition.</p>


2020 ◽  
Vol 24 ◽  
pp. 100175 ◽  
Author(s):  
Valentin S. Gischig ◽  
Domenico Giardini ◽  
Florian Amann ◽  
Marian Hertrich ◽  
Hannes Krietsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document