scholarly journals Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Mengying Li ◽  
Noam Lior

Analyses of fracturing and thermal performance of fractured reservoirs in engineered geothermal system (EGS) are extended from a depth of 5 km to 10 km, and models for flow and heat transfer in EGS are improved. Effects of the geofluid flow direction choice, distance between fractures, fracture width, permeability, radius, and number of fractures, on reservoir heat drawdown time are computed. The number of fractures and fracture radius for desired reservoir thermal drawdown rates are recommended. A simplified model for reservoir hydraulic fracturing energy consumption is developed, indicating it to be 51.8–99.6 MJ per m3 fracture for depths of 5–10 km.

Geothermics ◽  
2015 ◽  
Vol 58 ◽  
pp. 22-31 ◽  
Author(s):  
Hongbo Shao ◽  
Senthil Kabilan ◽  
Sean Stephens ◽  
Niraj Suresh ◽  
Anthon N. Beck ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3171
Author(s):  
Liangliang Guo ◽  
Zihong Wang ◽  
Yanjun Zhang ◽  
Zhichao Wang ◽  
Haiyang Jiang

In order to study the mechanism of hydraulic fracturing in enhanced geothermal systems, we analyzed the influence of high temperatures and embedded fractures on the initiation and propagation of hydraulic fractures using a laboratory test and numerical simulation. The analysis was conducted via large-scale true triaxial hydraulic fracturing tests with acoustic emission monitoring. Moreover, we discussed and established the elastic-plastic criterion of hydraulic fracturing initiation. The corresponding fracturing procedure was designed and embedded into the FLAC3D software. Then, a numerical simulation was conducted and compared with the laboratory test to verify the accuracy of the fracturing procedure. The influence of high temperatures on hydraulic fracturing presented the following features. First, multi-fractures were created, especially in the near-well region. Second, fracturing pressure, extension pressure, and fracture flow resistance became larger than those at room temperature. 3D acoustic fracturing emission results indicated that the influence of the spatial distribution pattern of embedded fractures on hydraulic fracturing direction was larger than that of triaxial stress. Furthermore, the fracturing and extension pressures decreased with the increase of embedded fracture density. For hydraulic fracturing in a high temperature reservoir, a plastic zone was generated near the borehole, and this zone increased as the injection pressure increased until the well wall failed.


2021 ◽  
Author(s):  
Ziyang Zhou ◽  
Hitoshi MIKADA ◽  
Junichi TAKEKAWA ◽  
Shibo Xu

Abstract With the increasing attention to clean and economical energy resources, geothermal energy and enhanced geothermal systems (EGS) have gained much importance. For the efficient development of deep geothermal reservoirs, it is crucial to understand the mechanical behavior of reservoir rock and its interaction with injected fluid under high temperature and high confining pressure environments. In the present study, we develop a novel numerical scheme based on the distinct element method (DEM) to simulate the failure behavior of rock by considering the influence of thermal stress cracks and high confining pressure for EGS. We validated the proposing method by comparing our numerical results with experimental laboratory results of uniaxial compression tests under various temperatures and biaxial compression tests under different confining pressure regarding failure patterns and stress-strain curves. We then apply the developed scheme to the hydraulic fracturing simulations under various temperatures, confining pressure, and injection fluid conditions. Our numerical results indicate that the number of hydraulic cracks is proportional to the temperature. At a high temperature and low confining pressure environment, a complex crack network with large crack width can be observed, whereas the generation of the micro cracks is suppressed in high confining pressure conditions. In addition, high-viscosity injection fluid tends to induce more hydraulic fractures. Since the fracture network in the geothermal reservoir is an essential factor for the efficient production of geothermal energy, the combination of the above factors should be considered in hydraulic fracturing treatment in EGS.


Author(s):  
Dustin Crandall ◽  
Goodarz Ahmadi ◽  
Grant Bromhal

Fractures in rocks enable the motion of fluids through the large, hot geologic formations of geothermal reservoirs. The heat transfer from the surrounding rock mass to the fluid flowing through a fracture depends on the geometry of the fracture, the fluid/solid properties, and the flow rate through the fracture. A numerical study was conducted to evaluate the changes in heat transfer to the fluid flowing through a rock fracture with changes in the flow rate. The aperture distribution of the rock fracture, originally created within Berea sandstone and imaged using a CT-scanner, is well described by a Gaussian distribution and has a mean aperture of approximately 0.6 mm. Water was used as the working fluid, enabling an evaluation of the efficiency of heat flux to the fluid along the flow path of a hot dry geothermal system. As the flow through the fracture was increased to a Reynolds number greater than 2300 the effect of channeling through large aperture regions within the fracture were observed to become increasingly important. For the fastest flows modeled the heat flux to the working fluids was reduced due to a shorter residence time of the fluid in the fracture. Understanding what conditions can maximize the amount of energy obtained from fractures within a hot dry geologic field can improve the operation and long-term viability of enhanced geothermal systems.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5725
Author(s):  
Rafał Moska ◽  
Krzysztof Labus ◽  
Piotr Kasza

Hydraulic fracturing (HF) is a well-known stimulation method used to increase production from conventional and unconventional hydrocarbon reservoirs. In recent years, HF has been widely used in Enhanced Geothermal Systems (EGS). HF in EGS is used to create a geothermal collector in impermeable or poor-permeable hot rocks (HDR) at a depth formation. Artificially created fracture network in the collector allows for force the flow of technological fluid in a loop between at least two wells (injector and producer). Fluid heats up in the collector, then is pumped to the surface. Thermal energy is used to drive turbines generating electricity. This paper is a compilation of selected data from 10 major world’s EGS projects and provides an overview of the basic elements needed to design HF. Authors were focused on two types of data: geological, i.e., stratigraphy, lithology, target zone deposition depth and temperature; geophysical, i.e., the tectonic regime at the site, magnitudes of the principal stresses, elastic parameters of rocks and the seismic velocities. For each of the EGS areas, the scope of work related to HF processes was briefly presented. The most important HF parameters are cited, i.e., fracturing pressure, pumping rate and used fracking fluids and proppants. In a few cases, the dimensions of the modeled or created hydraulic fractures are also provided. Additionally, the current state of the conceptual work of EGS projects in Poland is also briefly presented.


Sign in / Sign up

Export Citation Format

Share Document