Analysis of Intestinal Transporters

Author(s):  
Ikumi Tamai ◽  
Takeo Nakanishi
2017 ◽  
Vol 38 (9) ◽  
pp. 509-516 ◽  
Author(s):  
Keiichi Yotsumoto ◽  
Takeshi Akiyoshi ◽  
Naoki Wada ◽  
Ayuko Imaoka ◽  
Hisakazu Ohtani

2017 ◽  
Vol 32 (1) ◽  
pp. S12
Author(s):  
Stefan Oswald

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ibrahim Guillermo Castro-Torres ◽  
Minarda De la O-Arciniega ◽  
Elia Brosla Naranjo-Rodríguez ◽  
Víctor Alberto Castro-Torres ◽  
Miguel Ángel Domínguez-Ortíz ◽  
...  

Hypercholesterolemia is a metabolic disorder characterized by a high concentration of cholesterol in the blood. Eryngium carlinae is a medicinal plant used to treat lipid diseases. The goal of this work was to evaluate, in a model of hypercholesterolemia in mice, the hypocholesterolemic effect of a hydroalcoholic extract of E. carlinae and its main metabolite, D-mannitol. Biochemical analyses of serum lipids and hepatic enzymes were performed by photocolorimetry. We performed histopathological studies of the liver and the expression of the intestinal cholesterol transporters Abcg5 and Abcg8 was determined by standard western blot method. Our results showed that hydroalcoholic extract at doses of 100 mg/kg and D-mannitol at doses of 10 mg/kg reduced the concentration of both total cholesterol and non-HDL cholesterol, without altering the concentration of HDL cholesterol and without damage to hepatocytes. Treatment with the extract increased Abcg8 intestinal transporter expression, while D-mannitol decreased the expression of the two Abcg5/Abcg8 transporters, compared with the hypercholesterolemic group. Considering that Abcg5/Abcg8 transporters perform cholesterol efflux, our results demonstrate that the lipid-lowering effect of the hydroalcoholic extract may be associated with the increase of Abcg8 expression, but the hypocholesterolemic effect of D-mannitol is independent of overexpression of these intestinal transporters and probably they have another mechanism of action.


2012 ◽  
Vol 37 (3) ◽  
pp. 425-436 ◽  
Author(s):  
David S. Rowlands ◽  
Marilla Swift ◽  
Marjolein Ros ◽  
Jackson G. Green

When ingested at high rates (1.8–2.4 g·min–1) in concentrated solutions, carbohydrates absorbed by multiple (e.g., fructose and glucose) vs. single intestinal transporters can increase exogenous carbohydrate oxidation and endurance performance, but their effect when ingested at lower, more realistic, rates during intermittent high-intensity endurance competition and trials is unknown. Trained cyclists participated in two independent randomized crossover investigations comprising mountain-bike races (average 141 min; n = 10) and laboratory trials (94-min high-intensity intervals followed by 10 maximal sprints; n = 16). Solutions ingested during exercise contained electrolytes and fructose + maltodextrin or glucose + maltodextrin in 1:2 ratio ingested, on average, at 1.2 g carbohydrate·kg–1·h–1. Exertion, muscle fatigue, and gastrointestinal discomfort were recorded. Data were analysed using mixed models with gastrointestinal discomfort as a mechanism covariate; inferences were made against substantiveness thresholds (1.2% for performance) and standardized difference. The fructose–maltodextrin solution substantially reduced race time (–1.8%; 90% confidence interval = ±1.8%) and abdominal cramps (–8.1 on a 0–100 scale; ±6.6). After accounting for gastrointestinal discomfort, the effect of the fructose–maltodextrin solution on lap time was reduced (–1.1%; ±2.4%), suggesting that gastrointestinal discomfort explained part of the effect of fructose–maltodextrin on performance. In the laboratory, mean sprint power was enhanced (1.4%; ±0.8%) with fructose–maltodextrin, but the effect on peak power was unclear (0.7%; ±1.5%). Adjusting out gastrointestinal discomfort augmented the fructose–maltodextrin effect on mean (2.6%; ±1.9%) and peak (2.5%; ±3.0%) power. Ingestion of multiple transportable vs. single transportable carbohydrates enhanced mountain-bike race and high-intensity laboratory cycling performance, with inconsistent but not irreconcilable effects of gut discomfort as a possible mediating mechanism.


2017 ◽  
Vol 398 (2) ◽  
pp. 175-192 ◽  
Author(s):  
Janett Müller ◽  
Markus Keiser ◽  
Marek Drozdzik ◽  
Stefan Oswald

Abstract Although oral drug administration is currently the favorable route of administration, intestinal drug absorption is challenged by several highly variable and poorly predictable processes such as gastrointestinal motility, intestinal drug solubility and intestinal metabolism. One further determinant identified and characterized during the last two decades is the intestinal drug transport that is mediated by several transmembrane proteins such as P-gp, BCRP, PEPT1 and OATP2B1. It is well-established that intestinal transporters can affect oral absorption of many drugs in a significant manner either by facilitating their cellular uptake or by pumping them back to gut lumen, which limits their oral bioavailability. Their functional relevance becomes even more apparent in cases of unwanted drug-drug interactions when concomitantly given drugs that cause transporter induction or inhibition, which in turn leads to increased or decreased drug exposure. The longitudinal expression of several intestinal transporters is not homogeneous along the human intestine, which may have functional implications on the preferable site of intestinal drug absorption. Besides the knowledge about the expression of pharmacologically relevant transporters in human intestinal tissue, their exact localization on the apical or basolateral membrane of enterocytes is also of interest but in several cases debatable. Finally, there is obviously a coordinative interplay of intestinal transporters (apical–basolateral), intestinal enzymes and transporters as well as intestinal and hepatic transporters. This review aims to give an updated overview about the expression, localization, regulation and function of clinically relevant transporter proteins in the human intestine.


Sign in / Sign up

Export Citation Format

Share Document