Attenuation of Reactive Oxygen Production During Chilling in ABA-Treated Maize Cultured Cells

2002 ◽  
pp. 223-233 ◽  
Author(s):  
Wen-Ping Chen ◽  
H. Li Paul
2010 ◽  
Vol 285 (30) ◽  
pp. 22864-22873 ◽  
Author(s):  
James J. Matsuda ◽  
Mohammed S. Filali ◽  
Jessica G. Moreland ◽  
Francis J. Miller ◽  
Fred S. Lamb

1996 ◽  
Vol 40 (9) ◽  
pp. 2039-2042 ◽  
Author(s):  
C Wenisch ◽  
B Parschalk ◽  
K Zedtwitz-Liebenstein ◽  
A Weihs ◽  
I el Menyawi ◽  
...  

Azithromycin was given as a single oral dose (20 mg/kg of body weight) to 12 volunteers in a crossover study with roxithromycin (8 to 12 mg/kg) and clarithromycin (8 to 12 mg/kg). Flow cytometry was used to study the phagocytic functions and the release of reactive oxygen products following phagocytosis by neutrophil granulocytes prior to administration of the three drugs, 16 h after azithromycin administration, and 3 h after clarithromycin and roxithromycin administration. Phagocytic capacity was assessed by measuring the uptake of fluorescein isothiocyanate-labeled bacteria. Reactive oxygen generation after phagocytosis of unlabeled bacteria was estimated by the amount of dihydrorhodamine 123 converted to rhodamine 123 intracellularly. Azithromycin resulted in decreased capacities of the cells to phagocytize Escherichia coli (median [range], 62% [27 to 91%] of the control values; P < 0.01) and generate reactive oxygen products (75% [34 to 26%] of the control values; P < 0.01). Clarithromycin resulted in reduced phagocytosis (82% [75 to 98%] of control values; P < 0.01) but did not alter reactive oxygen production (84% [63 to 113%] of the control values; P > 0.05). Roxithromycin treatment did not affect granulocyte phagocytosis (92% [62 to 118%] of the control values; P > 0.05) or reactive oxygen production (94% [66 to 128%] of the control value; P > 0.05). No relation between intra- and/or extracellular concentrations of azithromycin and/or roxithromycin and the polymorphonuclear phagocyte function and/or reactive oxygen production existed (P > 0.05 for all comparisons). These results demonstrate that the accumulation of macrolides in neutrophils can suppress the response of phagocytic cells to bacterial pathogens after a therapeutic dose.


2002 ◽  
Vol 33 (9) ◽  
pp. 1268-1278 ◽  
Author(s):  
Albert P Senft ◽  
Timothy P Dalton ◽  
Daniel W Nebert ◽  
Mary Beth Genter ◽  
Alvaro Puga ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2814 ◽  
Author(s):  
Svantje Tauber ◽  
Swantje Christoffel ◽  
Cora Thiel ◽  
Oliver Ullrich

Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system.


Sign in / Sign up

Export Citation Format

Share Document