Adriamycin depresses in vivo and in vitro phos-phatidylethanolamine N-Methylation in rat heart sarcolemma

Author(s):  
Natasha Iliskovic ◽  
Vincenzo Panagia ◽  
Ján Slezák ◽  
Dinender Kumar ◽  
Timao Li ◽  
...  
Keyword(s):  
1976 ◽  
Vol 230 (6) ◽  
pp. 1744-1750 ◽  
Author(s):  
TB Allison ◽  
SP Bruttig ◽  
Crass MF ◽  
RS Eliot ◽  
JC Shipp

Significant alterations in heart carbohydrate and lipid metabolism are present 48 h after intravenous injection of alloxan (60 mg/kg) in rats. It has been suggested that uncoupling of oxidative phosphorylation occurs in the alloxanized rat heart in vivo, whereas normal oxidative metabolism has been demonstrated in alloxan-diabetic rat hearts perfused in vitro under conditions of adequate oxygen delivery. We examined the hypothesis that high-energy phosphate metabolism might be adversely affected in the alloxan-diabetic rat heart in vivo. Phosphocreatine and ATP were reduced by 58 and 45%, respectively (P is less than 0.001). Also, oxygen-dissociation curves were shifted to the left by 4 mmHg, and the rate of oxygen release from blood was reduced by 21% (P is less than 0.01). Insulin administration normalized heart high-energy phosphate compounds. ATP production was accelerated in diabetic hearts perfused in vitro with a well-oxygenated buffer. These studies support the hypothesis that oxidative ATP production in the alloxan-diabetic rat heart is reduced and suggest that decreased oxygen delivery may have a regulatory role in the oxidative metabolism of the diabetic rat heart.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Marcela Sorelli Carneiro‐Ramos ◽  
Gabriela Placoná Diniz ◽  
Maria Luiza Morais Barreto‐Chaves ◽  
Anselmo Sigari Moriscot

1973 ◽  
Vol 22 (14) ◽  
pp. 1813-1816 ◽  
Author(s):  
D. Jenkins ◽  
R.G. Spector
Keyword(s):  

1993 ◽  
Vol 291 (2) ◽  
pp. 463-472 ◽  
Author(s):  
M Wyss ◽  
T Wallimann ◽  
J Köhrle

Besides their well-known regulation of transcription by binding to nuclear receptors, thyroid hormones have been suggested to have direct effects on mitochondria. In a previous study, incubation of rat heart mitochondria with 125I-labelled N-bromoacetyl-3,3′,5-tri-iodo-L-thyronine (BrAcT3), a thyroid hormone derivative with an alkylating side chain, resulted in the selective labelling of a protein doublet around M(r) 45,000 on SDS/polyacrylamide gels [Rasmussen, Köhrle, Rokos and Hesch (1989) FEBS Lett. 255, 385-390]. Now, this protein doublet has been identified as mitochondrial creatine kinase (Mi-CK). Immunoblotting experiments with the cytoplasmic and mitochondrial fractions of rat heart, brain and liver, as well as inactivation studies with the purified chicken CK isoenzymes have further demonstrated that all four CK isoenzymes (Mia-, Mib-, M- and B-CK) are indeed selectively labelled by BrAcT3. However, in contrast with their bromoalkyl derivatives, thyroid hormones themselves did not compete for CK labelling, suggesting that not the thyroid hormone moiety but rather the bromoacetyl-driven alkylation of the highly reactive ‘essential’ thiol group of CK accounts for this selective labelling. Therefore the assumption that CK isoenzymes are thyroid-hormone-binding proteins has to be dismissed. Instead, bromoacetyl-based reagents may allow a very specific covalent modification and inactivation of CK isoenzymes in vitro and in vivo.


1957 ◽  
Vol 188 (3) ◽  
pp. 514-518 ◽  
Author(s):  
Kong-oo Goh ◽  
R. Duncan Dallam

A study of the oxygen consumption of the atrium, right and left ventricles from rat heart has been reported. The response of these heart regions to the in vitro and in vivo addition of thyroxine has been reported. Results obtained were: a) The oxygen consumption of the left ventricle from normal animals was found to be about 25% greater than that of the right ventricle and atrium. b) In animals whose thyroid activity was depressed the oxygen consumption of the atrium and the right and left ventricles was proportionately decreased about 25%. c) Animals whose thyroid activity was increased were found to have an increased oxygen consumption in all areas of the heart, however, not proportionately. d) The in vitro addition of thyroxine to the three heart areas from animals with decreased thyroid activity and normal animals caused an increase in oxygen consumption, whereas it did not appreciably affect the oxygen consumption of the heart areas from animals with increased thyroid activity.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Stefan Kren ◽  
Gabriel Caron ◽  
Doris A Taylor

Background; Bioengineered solutions to failing cardiac tissue have been difficult to achieve due partially to adverse interactions between circulating blood and the engineered surface. The aim of this study was to determine if by using naturally-derived ECM and cultured endothelial cells, a bioengineered whole-heart vascular intima could be generated. The matrix substrate for organ culture was produced by a perfusion-based detergent decelluarization of cadaveric rat heart. This process maintained ECM protein integrity as indicated by a glycosaminoglycan assay, with ~ equivalent amounts present relative to cadaveric rat heart. Its acellular nature was confirmed by loss of > 96% DNA (p = 0.001) compared to normal rat heart. In vitro infusion of aqueous dye or Mercox resin suggested a complete arterial tree, with structural preservation of vascular conduits. In vivo perfusability of the ECM was demonstrated by heterotopic transplantation with anticoagulation (n=4) into RNU rats for 7 days. Recellularization of the vascular tree was attempted by In Vitro Langendorff perfusion of 2 x 107 rat aortal endothelial cells (ECs) followed by a 7d incubation with escalating pulsatile flow in a 3D bioreactor. CellTracker Green assessed EC viability and permitted visualization of engrafted cells by fluorescent microscopy. Vessels of different diameters contained “patches” of confluent endothelium with complete circumferential lining of many of the matrix conduits. ECs lining both chamber walls and trabeculae were also observed. Nuclear staining showed 537.8 +/− 67.6 ECs / mm2 on endocardial surfaces, as well as 311.7 +/− 61.8 ECs / mm2 in vessels. To enhance the delivery of cells into the ventricular walls, a microcanulization of the brachiocephalic artery with sustained aortal perfusion was undertaken. This technique diverted more cells to the vasculature and more broadly distributed the cells in each area resulting in a lower cell density; 199.8 +/− 25.0 ECs / mm2 in vessels vs 125.8 +/− 43.4 ECs / mm2 on endocardial surfaces. In conclusion, these data suggest that by using detergent prepared acellular ECM of a whole organ, generation of a complete endothelial lining of vascular structures may be possible.


1990 ◽  
Vol 68 (3) ◽  
pp. 455-461
Author(s):  
M. Allam ◽  
C. Saunier ◽  
A. Sautegeau ◽  
D. Hartemann

The explanation for the increased frequency of troubles with digoxin therapy in patients with chronic pulmonary diseases is debated. The reported effects of hypoxia in vivo on myocardial levels of digoxin are contradictory, and there have been few studies on the effects of hypercapnia. In the past, it has been shown in rat myocardial tissue at rest in vitro that hypoxia decreased and hypercapnia acidosis increased the digoxin uptake. We performed a new study in vitro in an isolated beating rat heart perfused at constant flow (37 °C) and stimulated at a constant frequency (6 Hz). The performances were recorded with an intraventricular balloon equipped with a tip-manometer catheter. The action of digoxin was studied by recording systolic pressure (PS) and diastolic pressure (PD), the left ventricular developed pressure (LVDP = PS − PD), the (dP/dt)max, and the ratio (dP/dt)max/PS. First, the heart was perfused for 30 min with a modified Tyrode's solution perfusate aerated with carbogen (pH = 7.40; [Formula: see text]; [Formula: see text]) (1 mmHg = 133.32 Pa). Various parameters of contractions were recorded (initial control values). Then the heart was perfused for 15 min with Tyrode's solution aerated either with a hypoxic gas mixture (pH = 7.41; [Formula: see text]; [Formula: see text]), a hypercapnic gas mixture (pH = 7.08; [Formula: see text]; [Formula: see text]), or a hypoxic–hypercapnic gas mixture (pH = 7.09; [Formula: see text]; [Formula: see text]). Control hearts were continuously perfused with Tyrode's solution aerated with carbogen. During heart perfusion with hypercapnic, hypoxic, or hypoxic–hypercapnic Tyrode's solution, a decrease in LVDP and (dP/dt)max was observed. Finally, the heart was perfused with the same Tyrode's solution plus 1.75 × 10−5 M digoxin. The increase in myocardial contractility produced by digoxin was enhanced by hypercapnia and abolished by hypoxia. The addition of hypercapnia to hypoxia in Tyrode's solution seems to enhance the depressor action of the hypoxia.Key words: isolated heart, digoxin, hypoxia, hypercapnia, myocardial contractility.


2020 ◽  
Vol 881 ◽  
pp. 173137
Author(s):  
Emna Khdhiri ◽  
Kais Mnafgui ◽  
Lakhdar Ghazouani ◽  
Anouar Feriani ◽  
Raouf Hajji ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document